
Discerning Linkage-Based Algorithms Among Hierarchical Clustering
Methods

Margareta Ackerman and Shai Ben-David
D.R.C. School of Computer Science
University of Waterloo, Canada

{mackerma, shai}@cs.uwaterloo.ca

Abstract

Selecting a clustering algorithm is a perplexing
task. Yet since different algorithms may yield
dramatically different outputs on the same
data, the choice of algorithm is crucial. When
selecting a clustering algorithm, users tend to
focus on cost-related considerations (software
purchasing costs, running times, etc). Differ-
ences concerning the output of the algorithms
are not usually considered.

Recently, a formal approach for selecting a clus-
tering algorithm has been proposed [2]. The ap-
proach involves distilling abstract properties of
the input-output behavior of different cluster-
ing paradigms and classifying algorithms based
on these properties.

In this paper, we extend the approach in [2] into
the hierarchical setting. The class of linkage-
based algorithms is perhaps the most popu-
lar class of hierarchical algorithms. We iden-
tify two properties of hierarchical algorithms,
and prove that linkage-based algorithms are the
only ones that satisfy both of these properties.

Our characterization clearly delineates the dif-
ference between linkage-based algorithms and
other hierarchical algorithms. We formulate
an intuitive notion of locality of a hierarchical
algorithm that distinguishes between linkage-
based and “global” hierarchical algorithms like
bisecting k-means, and prove that popular divi-
sive hierarchical algorithms produce clusterings
that cannot be produced by any linkage-based
algorithm.

1 Introduction

Clustering is a fundamental and immensely useful task,
with many important applications. There are many clus-
tering algorithms, and these algorithms often produce
different results on the same data. Faced with a concrete
clustering task, a user needs to choose an appropriate al-
gorithm. Currently, such decisions are often made in a
very ad hoc, if not completely random, manner. Users

are aware of the costs involved in employing different
clustering algorithms, such as running times, memory
requirements, and software purchasing costs. However,
there is very little understanding of the differences in the
outcomes that these algorithms may produce.

Recently, a new approach for selecting a clustering
algorithm has been proposed [2]. The approach in-
volves identifying significant properties that distinguish
between different clustering paradigms. By focusing on
the input-output behaviour of algorithms, these prop-
erties shed light on essential differences between them.
Users could then choose desirable properties based on
domain expertise, and select an algorithm that satisfies
these properties.

The study of properties of clustering algorithms has so
far been focused on partitional algorithms ([2], [1], [3],
[4]). Partitional algorithms produce a single partition of
the data.

In this paper, we study the other prominent class of
clustering algorithms, namely hierarchical algorithms.
These algorithms output dendrograms, which the user
can then traverse to obtain the desired clustering. Den-
drograms provide a convenient method for exploring
multiple clusterings of the data. Notably, for some appli-
cations the dendrogram itself, not any clustering found
in it, is the desired final outcome. One such application
is found in the field of phylogeny, which aims to recon-
struct the tree of life.

One popular class of hierarchical algorithms is linkage-
based algorithms. These algorithms start with singleton
clusters, and repeatedly merge pairs of clusters until a
dendrogram is formed. This class includes commonly-
used algorithms such as single-linkage, average-linkage,
complete-linkage, and Ward’s method.

In this paper, we provide a property-based characteri-
zation of hierarchical linkage-based algorithms. We iden-
tify two properties of hierarchical algorithms that are
satisfied by all linkage-based algorithms, and prove that
at the same time no algorithm that is not linkage-based
can satisfy both of these properties.

The popularity of linkage-based algorithms lead to
a common misconception that linkage-based algorithms
are synonymous with hierarchical algorithms. We show
that even when the internal workings of algorithms are

ignored, and the focus is placed solely on their input-
output behaviour, there are natural hierarchical algo-
rithms that are not linkage-based. We define a large class
of divisive algorithms that includes the popular bisecting
k-means algorithm, and show that no linkage-based al-
gorithm can simulate the input-output behaviour of any
algorithm in this class.

2 Previous Work

There is some previous work on distinguishing linkage-
based algorithms based on their properties in the parti-
tional setting. The k-stopping criteria is used to formu-
late linkage-based algorithms in the partitional setting,
where instead of constructing a dendrogram, clusters are
merged until a given number of clusters is formed. Ben-
David and Bogah-Zedah [3] provide three properties that
uniquely identify single-linkage with the k-stopping crite-
ria. More recently, Ackerman, Ben-David and Loker [1]
characterize linkage-based algorithms with this stopping
criteria in terms of three natural properties. These re-
sults enable a comparison of the input-output behaviour
of (a partitional variant of) linkage-based algorithms
with other partitional algorithms.

In this paper, we characterize hierarchical linkage-
based algorithms, which map data sets to dendrograms.
Our characterization is independent of any stopping cri-
teria. It enables the comparison of linkage-based al-
gorithms to other hierarchical algorithms, and clearly
delineates the differences between the input/output be-
haviour of linkage-based algorithms from all other hier-
archical algorithms.

3 Definitions

A distance function is a symmetric function d : X×X →
R+, such that d(x, x) = 0 for all x ∈ X. The data sets
that we consider are pairs (X, d), where X is some finite
domain set and d is a distance function over X. We
say that a distance function d over X extends distance
function d′ over X ′ ⊆ X if d′ ⊆ d.

A k-clustering C = {C1, C2, . . . , Ck} of data set X is
a partition of X into k disjoint subsets of X (so, ∪iCi =
X). A clustering of X is a k-clustering of X for some
1 6 k 6 |X|. For a clustering C, let |C| denote the
number of clusters in C. For x, y ∈ X and clustering C
of X, we write x ∼C y if x and y belong to the same
cluster in C and x 6∼C y, otherwise.

Given a rooted tree T where the edges are oriented
away from the root, let V (T) denote the set of vertices
in T , and E(T) denote the set of edges in T . We use the
standard interpretation of the terms leaf, descendent,
parent, and child.

A dendrogram over a data set X is a binary rooted
tree where the leaves correspond to elements of X. In
addition, every node is assigned a level, using a level
function (η); leaves are places at level 0, parents have
higher levels than their children, and no level is empty.
This definition represents the common graphical depic-
tion of a dendrogram. Formally,

Definition 1 (dendrogram). A dendrogram over (X, d)
is a triple (T,M, η) where T is a binary rooted tree, M :
leaves(T)→ X is a bijection, and η : V (T)→ {0, . . . , h}
is onto (for some h ∈ Z+ ∪ {0}) such that

1. For every leaf node x ∈ V (T), η(x) = 0.

2. If (x, y) ∈ E(T), then η(x) > η(y).

Given a dendrogram D = (T,M, η) of X, we define
a mapping from nodes to clusters C : V (T) → 2X by
C(x) = {M(y) | y is a leaf and a descendent of x}. If
C(x) = A, then we write v(A) = x. We think of v(A) as
the vertex (or node) in the tree that represents cluster A.

We say that A ⊆ X is a cluster in D if there exists
a node x ∈ V (T) so that C(x) = A. We say that a
clustering C = {C1, . . . , Ck} of X ′ ⊆ X is in D if Ci

is in D for all 1 6 i 6 k. Note that a dendrogram
may contain clusterings that do not partition the entire
domain, and ∀i 6= j, v(Ci) is not a descendent of v(Cj),
since Ci ∩ Cj = ∅.
Definition 2 (sub-dendrogram). A sub-dendrogram of
(T,M, η) rooted at x ∈ V (T) is a dendrogram (T ′,M ′, η′)
where

1. T ′ is the subtree of T rooted at x

2. For every y ∈ leaves(T ′), M ′(y) = M(y).

3. For all y, z ∈ V (T ′), η′(y) < η′(z) if and only if
η(y) < η(z).

Definition 3 (Isomorphisms). A few notions of isomor-
phisms of structures are relevant to our discussion.

1. We say that (X, d) and (X ′, d′) are isomorphic do-
mains, denoting it by (X, d) ∼=X (X ′, d′), if there
exists a bijection φ : X → X ′ so that d(x, y) =
d′(φ(x), φ(y)) for all x, y ∈ X.

2. We say that two clusterings (or partitions) C =
{C1, . . . Ck} of some domain (X, d) and C ′ =
{C ′1, . . . C ′k} of some domain (X ′, d′) are isomorphic
clusterings, denoted (C, d) ∼=C (C ′, d′), if there ex-
ists a domain isomorphism φ : X → X ′ so that
x ∼C y if and only if φ(x) ∼C′ φ(y).

3. We say that (T1, η1) and (T2, η2) are isomorphic
trees, denoting it by (T1, η1) ∼=T (T1, η1), if there
exists a bijection H : V (T1)→ V (T2) so that

(a) for all x, y ∈ V (T1), (x, y) ∈ E(T1) if and only
if (H(x), H(y)) ∈ E(T2), and

(b) for all x ∈ V (T1), η1(x) = η2(H(x)).

4. We say that D1 = (T1,M1, η1) of (X, d) and
D2 = (T2,M2, η2) of (X ′, d′) are isomorphic den-
drograms, denoted D1

∼=D D2, if there exists a do-
main isomorphism φ : X → X ′ and a tree iso-
morphism H : (T1, η1) → (T2, η2) so that for all
x ∈ leaves(T1), φ(M1(x)) = M2(H(x)).

4 Hierarchical and Linkage-Based
Algorithms

Hierarchical algorithms are those that output dendro-
grams, while linkage-based algorithms are hierarchical

algorithms that can be simulated by repeatedly merging
close clusters. In this section, we formally define these
two types of algorithms.

4.1 Hierarchical algorithms
In addition to outputing a dendrogram, we require that
hierarchical clustering functions satisfy a few natural
properties.

Definition 4 (Hierarchical clustering function). A hier-
archical clustering function F is a function that takes as
input a pair (X, d) and outputs a dendrogram (T,M, η).
We require such a function, F , to satisfy the following:

1. Representation Independence: Whenever
(X, d) ∼=X (X ′, d′), then F (X, d) ∼=D F (X ′, d′).

2. Scale Invariance: For any domain set X and any
pair of distance functions d, d′ over X, if there exists
c ∈ R+ such that d(a, b) = c·d′(a, b) for all a, b ∈ X,
then F (X, d) = F (X, d′).

3. Richness: For all data sets {(X1, d1), . . . (Xk, dk)}
where Xi ∩ Xj = ∅ for all i 6= j, there exists

a distance function d̂ over
⋃k

i=1Xi that extends
each of the di’s (for i 6 k), so that the clustering

{C1, . . . , Ck} is in F (
⋃k

i=1Xi, d̂).

The last condition, richness, requires that by manipu-
lating between-cluster distances every clustering can be
produced by the algorithm. Intuitively, if we place clus-
ters sufficiently far apart, then the resulting clustering
should be in the dendrogram.

In this work we focus on distinguishing linkage-based
algorithms from among hierarchical algorithms.

4.2 Linkage-based algorithms
The class of linkage-base algorithms includes some of
the most popular hierarchical algorithms, such as single-
linkage, average-linkage, complete-linkage, and Ward’s
method.

Every linkage-based algorithm has a linkage function
that can be used to determine which clusters to merge
at every step of the algorithm.

Definition 5 (Linkage function). A linkage function is
a function

` : {(X1, X2, d) | d over X1 ∪X2} → R+

such that,

1. ` is representation independent: For all (X1, X2)
and (X ′1, X

′
2), if ({X1, X2}, d) ∼=C ({X ′1, X ′2}, d′)

then `(X1, X2, d) = `(X ′1, X
′
2, d
′).

2. ` is monotonic: For all (X1, X2, d) if d′ is a distance
function over X1∪X2 such that for all x ∼{X1,X2} y,
d(x, y) = d′(x, y) and for all x 6∼{X1,X2} y, d(x, y) 6
d′(x, y) then `(X1, X2, d

′) > `(X1, X2, d).

For technical reasons, we shall assume that a linkage
function has a countable range. Say, the set of non-
negative algebraic real numbers1.

1Imposing this restriction simplifies our main proof, while
not having any meaningful impact on the scope of clusterings
considered.

For example, the single-linkage linkage func-
tion is `SL(A,B, d) = mina∈A,b∈B d(a, b) and the
average-linkage linkage function is `AL(A,B, d) =∑

a∈A,b∈B d(a,b)

|A|·|B| .

For a dendrogram D and clusters A and B in
D, if parent(v(A)) = parent(v(B)) = x, then
let parent(A,B) = x, otherwise parent(v(A)) =
parent(v(B)) = ∅.

We now define linkage-based functions.

Definition 6 (linkage-based function). A hierarchi-
cal clustering function F is linkage-based if there
exists a linkage function ` so that for all (X, d),
F (X, d) = (T,M, η) where η(parent(A,B)) = m if
and only if `(A,B) is minimal in {`(S, T) : S ∪ T =
∅, η(parent(S)) > m, η(parent(T)) > m}.

Note that the above definition implies that there ex-
ists a linkage function that can be used to simulate the
output of F . We start by assigning every element of the
domain to a leaf node. We then use the linkage function
to identity the closest pair of nodes (wrt the clusters that
they represent), and repeatedly merge the closest pairs
of nodes that do yet have parents, until only one such
node remains.

4.3 Locality

We introduce a new property of hierarchical algorithms.
Locality states that if we select a clustering from a den-
drogram (a union of clusters that appear in the dendro-
gram), and run the hierarchical algorithm on the data
underlying this clustering, we obtain a result that is con-
sistent with the original dendrogram.

Definition 7 (Locality). A hierarchical function F is
local if for all X, d, and X ′ ⊆ X, whenever clustering
C = {C1, C2, . . . , Ck} of X ′ is in F (X, d) = (T,M, η),
then for all 1 6 i 6 k

1. Cluster Ci is in F (X ′, d/X ′) = (T ′,M ′, η′), and the
sub-dendrogram of F (X, d) rooted at v(Ci) is also a
sub-dendrogram of F (X ′, d/X ′) rooted at v(Ci).

2. For all x, y ∈ X ′, η′(x) < η′(y) if and only if η(x) <
η(y).

4.4 Outer consistency

Given a dendrogram produced by a hierarchical algo-
rithm, we select a clustering C from a dendrogram and
pull apart the clusters in C (thus making the clustering
C more pronounced). If we then run the algorithm on
the resulting data, we can expect that the clustering C
will occur in the new dendrogram.

Outer consistency is a relaxation of the above prop-
erty, making this requirement only on a subset of clus-
terings.

For a cluster A in a dendrogram D, the A-cut of D is
a clustering in D represented by nodes on the same level
as v(A) or directly below v(A). Formally,

Definition 8 (A-cut). Given a cluster A in a dendro-
gram D = (T,M, η), the A-cut of D is cutA(D) =

{C(u) | u ∈ V (T), η(parent(u)) > η(v(A)) and η(u) 6
η(v(A)).}.

Note that for any cluster A in D of (X, d), the A-cut
is a clustering of X, and A is one of the clusters in that
clustering.

A distance function d′ over X is (C, d)-outer consistent
if d′(x, y) = d(x, y) whenever x ∼C y, and d′(x, y) >
d(x, y) whenever x 6∼C y.

Definition 9 (Outer-Consistency). A hierarchical func-
tion F is outer-consistent if for all (X, d) and
any cluster A in F (X, d) = (T,M, η), if d′

is a (cutA(F (X, d)), d)-outer-consistent variant then
cutA(F (X, d)) = cutA(F (X, d′)).

5 Main result
The following is our characterization of linkage-based hi-
erarchical algorithms.

Theorem 1. A hierarchical function F is linkage-based
if and only if F is outer-consistent and local.

The proof comprises the rest of this section.

Proof. We begin by showing that every local, outer-
consistent hierarchical function F is linkage-based. To
prove this direction, we show that there exists a linkage
function ` so that when ` is used in Definition 6 then
for all (X, d) the output is F (X, d). Due to the repre-
sentation independence of F , one can assume w.l.o.g.,
that the domain sets over which F is defined are (finite)
subsets of the set of natural numbers, N.

We define a relation <F over pairs of pairs of subsets
and later prove that it is a (partial) ordering.

Definition 10 (The (pseudo-) partial ordering <F).
We consider triples of the form (A,B, d), where A ∩
B = ∅ and d is a distance function over A ∪ B. Two
triples, (A,B, d) and (A′, B′, d′) are equivalent, denoted
(A,B, d) ∼= (A′, B′, d′) if they are isomorphic as cluster-
ings, namely, if ({A,B}, d) ∼=C ({A′, B′}, d′).
<F is a binary relation over equivalence classes of

such triples, indicating that F merges a pair of clusters
earlier than another pair of clusters. Formally, denot-
ing ∼=-equivalence classes by square brackets, we define
it by: [(A,B, d)] <F [(A′, B′, d′)] if there exists a dis-
tance function d∗ over X = A ∪ B ∪ A′ ∪ B′ so that
F (X, d∗) = (T,M, η) such that

1. d∗ extends both d and d′ (namely, d ⊆ d∗ and d′ ⊆
d∗),

2. There exist (x, y), (x, z) ∈ E(T) such that C(x) =
A ∪B, C(y) = A, and C(z) = B

3. For all D ∈ {A′, B′}, either D ⊆ A ∪ B, or D ∈
cutA∪BF (X, d∗).

4. η(v(A′)) < η(v(A∪B)) and η(v(B′)) < η(v(A∪B)).

For the sake of simplifying notation, we will omit the
square brackets in the following discussion.

In the following lemma we show that if (A,B, d) <F

(A′, B′, d′), then A ∪ B cannot have a lower level than
A′ ∪B′.

Lemma 1. Given a local and outer-consistent hierar-
chial function F , whenever (A,B, d) <F (A′, B′, d′),
then there is no data set (X, d) so that η(v(A′ ∪ B′) 6
η(v(A ∪B)), where F (X, d) = (T,M, η).

Proof. By way of contradiction, assume that such (X, d)
exists. Let X ′ = A ∪ B ∪ A′ ∪ B′. Since (A,B, d) <F

(A′, B′, d′), there exists d′ that satisfies the conditions of
Definition 10.

Consider F (X ′, d/X ′). By locality, the sub-
dendrogram rooted at v(A∪B) contains the same nodes
in both F (X ′, d/X ′) and F (X, d), and similarly for the
sub-dendrogram rooted at v(A′ ∪ B′). In addition, the
relative level of nodes in these subtrees is the same.

By pushing A away from B, and A′ away from B′ it
is easy to see that there exists a d∗ over X ′ that is both
an ({A∪B,A′ ∪B′}, d/X ′)-outer consistent variant and
an ({A ∪ B,A′, B′}, d′)-outer consistent variant. Note
that {A ∪B,A′ ∪B′} is an (A ∪B)-cut of F (X ′, d/X ′).
Therefore, by outer-consistency, cutA∪B(F (X ′, d∗)) =
{A′ ∪B′, A ∪B}.

Since d′ satisfies the conditions in Definition 10,
cutA∪BF (X, d′) = {A∪B,A′, B′}. By outer-consistency
we get that cutA∪B(F (X ′, d∗)) = {A′ ∪B′, A,B}. Since
these sets are all non-empty, this is a contradiction.

We now define equivalence with respect to <F .

Definition 11 (∼=F). [(A,B, d)] and [(A′, B′, d′)] are F -
equivalent, denoted [(A,B, d)] ∼=F [(A′, B′, d′)], if there
exists a distance function d∗ over X = A ∪ B ∪ A′ ∪ B′
so that F (A ∪B ∪A′ ∪B′, d∗) = (T, η) where

1. d∗ extends both d and d′,

2. There exist (x, y), (x, z) ∈ E(T) such that C(x) =
A ∪B, and C(y) = A, and C(z) = B,

3. There exist (x′, y′), (x′, z′) ∈ E(T) such that C(x′) =
A′ ∪B′, and C(y′) = A′, and C(z′) = B′, and

4. η(x) = η(x′)

(A,B, d) is comparable with (C,D, d′) if they are <F

comparable or (A,B, d) ∼=F (C,D, d′).
Whenever two triple are F -equivalent, then they have

the same <F or ∼=F relationship with all other triples.

Lemma 2. Given a local, outer-consistent hierarchical
function F , if (A,B, d1) ∼=F (C,D, d2), then for any
(E,F, d3), if (E,F, d3) is comparable with both (A,B, d1)
and (C,D, d2) then

• if (A,B, d1) ∼=F (E,F, d3) then (C,D, d2) ∼=F

(E,F, d3)

• if (A,B, d1) <F (E,F, d3) then (C,D, d2) <F

(E,F, d3)

The proof is omitted to save space.
Note that <F is not transitive. To show that <F can

be extended to a partial ordering, we first prove the fol-
lowing “anti-cycle” property.

Lemma 3. Given a hierarchical function F that is lo-
cal and outer-consistent, there exists no finite sequence
(A1, B1, d1) <F · · · <F (An, Bn, dn) <F (A1, B1, d1).

Proof. Without loss of generality, assume that such a se-
quence exists. By richness, there exists a distance func-
tion d that extends each of the di where {A1 ∪B1, A1 ∪
B2, . . . , An ∪ Bn} is a clustering in F (

⋃
iAi ∪ Bi, d) =

(T,M, η).
Let i0 be so that η(v(Ai0 ∪ Bi0) 6 η(v(Aj ∪ Bj)) for

all j 6= i0. By the circular structure with respect to <F ,
there exists j0 so that (Aj0 , Bj0 , dj0) <F (Ai0 , Bi0 , di0).
This contradicts Lemma 1.

The following is a well-known result.

Lemma 4. For any cycle-free, anti-symmetric relation
P (,) over a finite or countable domain D there exists an
embedding h into R+ so that for all x, y ∈ D, if P (x, y)
then h(x) < h(y).

Finally, we define our linkage function by embedding
the ∼=F -equivalence classes into the positive real num-
bers in an order preserving way, as implied by applying
Lemma 4 to <F . Namely, `F : {[(A,B, d)] : A ⊆ N, B ⊆
N, A ∩ B = ∅ and d is a distance function over A ∪
B} → R+ so that [(A,B, d)] <F [(A′, B′, d′)] implies
`F [(A,B, d)] < `F [(A,B, d)].

Lemma 5. The function `F is a linkage function for any
hierarchical function F that satisfies locality and outer-
consistency.

Proof. Since `F is defined on ∼=F -equivalence classes,
representation independence of hierarchical functions
implies that `F satisfies condition 1 of Definition 5. The
function `F satisfies condition 2 of Definition 5 by lemma
6.

Lemma 6. Consider d1 over X1 ∪ X2 and d2
an ({X1, X2}, d1)-outer-consistent variant, then
(X1, X2, d2) 6<F (X1, X2, d1), whenever F is local
and outer-consistent.

Proof. Assume that there exist such d1 and d2 where
(X1, X2, d2) <F (X1, X2, d1). Let d3 over X1 ∪ X2

be a distance function that is both an ({X1, X2}, d1)-
outer-consistent variant and d2 an ({X1, X2}, d3)-outer-
consistent variant.

Set (X ′1, X
′
2, d2) = (X1, X2, d2) and (X ′′1 , X

′′
2 , d3) =

(X1, X2, d3).
Let X = X1 ∪X2 ∪X ′1 ∪X ′2 ∪X ′′1 ∪X ′′2 . By richness,

there exists a distance function d∗ that extends di for
all 1 6 i 6 3 so that {X1 ∪X2, X

′
1 ∪X ′2, X ′′1 ∪X ′′2 } is a

clustering in F (X, d∗) = (T, η).
Now, (X ′1, X

′
2, d2) <F (X1, X2, d1), by locality and

outer-consistency, we get that η(v(X ′1∪X ′2)) < η(v(X1∪
X2)). We consider the level (η value) of v(X ′′1 ∪X ′′2) with
respect to the levels of v(X ′1 ∪X ′2) and v(X1 ∪X2).

Case 1: η(v(X ′′1 ∪ X ′′2)) 6 η(v(X ′1 ∪ X ′2)). Then
there exists an outer-consistent change moving X1 and
X2 further away from each other until (X1, X2, d1) =

(X ′′1 , X
′′
2 , d3). Let d̂ be the distance function that

extends d1 and d2 which shows that (X ′1, X
′
2, d2) <F

(X1, X2, d1). cutX′
1∪X′

2
F (X1 ∪ X2 ∪ X ′1 ∪ X ′2, d̂) =

{X ′1 ∪ X ′2, X1, X2}. We can apply outer consistency
on {X ′1 ∪X ′2, X1, X2} and move X1 and X2 away from
each other until {X1, X2} is isomorphic to {X ′′1 , X ′′2 }.
By outer consistency, this modification should not effect
the (X1 ∪ X2)-cut. Applying locality, we have two
isomorphic data sets that produce different dendrogram,
one in which the further pair (d2) not below the medium
pair (d3), and the other in which the medium pair
(turning d3 into d2) is above the furthest pair.

The other two cases, η(v(X ′′1 ∪X ′′2)) > η(v(X1 ∪X2))
and η(X1∪X2) < η(X ′′1 ∪X ′′2) < η(X ′1∪X ′2) are similar,
and omitted for brevity.

The following Lemma concludes the proof that every
local, out-consistent hierarchical algorithm is linkage-
based.

Lemma 7. Given any hierarchical function F that sat-
isfies locality and outer-consistency, let `F be the linkage
function defined above. Let L`F denote the linkage-based
algorithm that `F defines. Then L`F agrees with F on
every input data set.

Proof. Let (X, d) be any data set. We prove that at
every level s, the nodes at level s in F (X, d) represent
the same clusters as the nodes at level s in L`F (X, d). In
both F (X, d) = (T,M, η) and L`F (X, d) = (T ′,M ′, η′),
level 0 consists of |X| nodes each representing a unique
elements of X.

Assume the result holds below level k. We show that
pairs of nodes that do not have parents below level k
have minimal `F value only if they are merged at level k
in F (X, d).

Consider F (X, d) at level k. Since the dendrogram
has no empty levels, let x ∈ V (T) where η(x) = k.
Let x1 and x2 be the children of x in F (X, d). Since
η(x1), η(x2) < k, these nodes also appear in L`F (X, d)
below level k, and neither node has a parent below level
k.

If x is the only node in F (X, d) at level k, then it
must also occur in L`F (X, d). Otherwise, there exists
a node y1 ∈ V (T), y 6∈ {x1, x2} so that η(y1) < k and
η(parent) > k. Let X ′ = C(x) ∪ C(y1). By locality,
cutC(x)F (X ′, d/X ′) = {C(x), C(y1)}, y1 is below x, and
x1 and x2 are the children of x. Therefore, (x1, x2, d) <F

(x1, y1, d) and `F (x1, x2, d) < `F (x1, y1, d). Similarly,
`F (x1, x2, d) < `F (x2, y1, d)

Assume that there exists y2 ∈ V (T), y2 6∈ {x1, x2, y1}
so that η(y2) < k and η(parent) > k. If parent(y1) =
parent(y1) and η(parent(y1)) = k, then (X1, X2, d) ∼=F

(y1, y2, d) and so `F (x1, x2, d) = `F (y1, y2, d).
Otherwise, let X ′ = C(x)∪C(y1)∪C(y2). By richness,

there exists a distance function d∗ that extends d/C(x)
and d/(C(y1) ∪ C(y1)), so that {C(x), C(y1) ∪ C(y2)}
is in F (X ′, d∗). Note that by locality, the node
v(C(y1) ∪ C(y2)) has children v(C(y1)) and v(C(y2)) in

F (X ′, d∗). We can separate C(x) from C(y1) ∪ C(y2)
in both F (X ′, d∗) and F (X ′, d/X ′) until both are
equal. Then by outer-consistency, cutC(x)F (X ′, d/X ′) =
{C(x), C(y1), C(y2)} and by locality y1 and y2 are
below X. Therefore, (X1, X2, d) <F (y1, y2, d) and so
`F (x1, x2) < `F (y1, y2).

The other direction of the proof is straight forward,
and so the proof of the following Lemma is omitted to
save space.

Lemma 8. Every linkage-based hierarchical clustering
function satisfies locality and outer-consistency.

6 Divisive algorithms
Our formalism provides a precise sense in which linkage-
based algorithms make only local considerations, while
many divisive algorithms inevitably take more global
considerations into account. This fundamental distinc-
tion between these paradigms can be used to help select
a suitable hierarchical algorithm for specific applications.

This distinction also implies that divisive algorithms
cannot be simulated by any linkage-based algorithm,
showing that the class of hierarchical algorithms is
strictly richer than the class of linkage-based algorithm
(even when focusing only on the input-output behaviour
of algorithms).

A 2-clustering function F maps a data set (X, d) to a
2-partition of X. An F-Divisive algorithm is a divisive
algorithm that uses a 2-clustering function F to decide
how to split nodes. Formally,

Definition 12 (F-Divisive). A hierarchical clustering
function is F-Divisive wrt a 2-clustering function F ,
if for all (X, d), F(X, d) = (T,M, η) such that for all
x ∈ V (T)/leaves(T) with children x1 and x2, F(C(x)) =
{C(x1), C(x2)}.

Note that Definition 12 does not place restrictions on
the level function. This allows for some flexibility in the
levels. Intuitively, it doesn’t force an order on splitting
nodes.

The following property represents clustering functions
that utilize contextual information found in the remain-
der of the data set when partitioning a subset of the
domain.

Definition 13 (Context sensitive). F is context-
sensitive if there exist distance functions d ⊂ d′ such that
F({x, y, z}, d) = {{x}, {y, z}} and F({x, y, z, w}, d′) =
{{x, y}, {z, w}}.

Many 2-clustering functions, including k-means, min-
sum, furthest-centroid, and min-diameter are context-
sensitive (see Corollary 2). Natural divisive algorithms,
such as bisecting k-means (k-means-Divisive), often rely
on context-sensitive 2-clustering functions.

Whenever a 2-clustering algorithm is context-
sensitive, then the F-divisive function is not local.

Theorem 2. If F is context-sensitive then the F-
divisive function is not local.

Proof. Since F is context-sensitive, there exists a
distance functions d ⊂ d′ so that {x} and {y, z}
are the children of the root in F({x, y, z}, d), while
in F({x, y, z, w}, d′), {x, y} and {z, w} are the chil-
dren of the root and z and w are the children of
{z, w}. Therefore, {{x, y}, {z}} is clustering in
F({x, y, z, w}, d′). Then {{x, y}, {z}} is a clustering
in F-divisive({x, y, z}, d). But cluster {x, y} is not in
F({x, y, z}, d) , therefore F-divisive is not local.

Applying Theorem 1, we get:

Corollary 1. If F is context-sensitive, then the F-
divisive function is not linkage-based.

We say that two hierarchical algorithms strongly dis-
agree if they may output dendrograms with different
clusterings. Formally,

Definition 14. Two hierarchical functions F0 and F1

strongly disagree if there exists a data set (X, d) and a
clustering C of X so that C is in Fi(X, d) but not in
F1−i(X, d).

Theorem 3. If F is context-sensitive, then the F-
divisive function strongly disagrees with every linkage-
based function.

Proof. Let L be any linkage-based function. Since
F is context-sensitive, there exists distance functions
d ⊂ d′ so that F({x, y, z}, d) = {{x}, {y, z}} and
F({x, y, z, w}, d′) = {{x, y}, {z, w}}.

Assume that L and F-divisive produce the same out-
put on ({x, y, z, w}, d′). Therefore, since {{x, y}, {z}}
is a clustering in F-divisive({x, y, z, w}, d′), it is also a
clustering in L({x, y, z, w}, d′). Since L is linkage-based,
by Theorem 1, L is local. Therefore, {{x, y}, {z}} is a
clustering in L({x, y, z}, d′). But it is not a clustering
in F-divisive({x, y, z}, d).

Corollary 2. The divisive algorithms that are based
on the following 2-clustering functions strongly disagree
with every linkage-based function: k-means, min-sum,
min-diameter, further-centroids.

Proof. Setting x = 1, y = 2, z = 3 − ε, and z = 4 − ε
shows that furthest-centroid is context-sensitive. For the
other 2-clustering functions, set x = 1, y = 3, z = 4, and
z = 6. The result follows by Theorem 3.

References
[1] M. Ackerman, S. Ben-David, and D. Loker. Char-

acterization of Linkage-based Clustering. COLT,
2010.

[2] M. Ackerman, S. Ben-David, and D. Loker. To-
wards Property-Based Classification of Clustering
Paradigms. NIPS, 2010.

[3] R. Bosagh Zadeh and S. Ben-David. A Uniqueness
Theorem for Clustering. UAI, 2009.

[4] Jon Kleinberg. An Impossibility Theorem for Clus-
tering. NIPS, 2002.

