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Abstract—Clustering is a fundamental data mining tool
that aims to divide data into groups of similar items.
Intuition about clustering reflects the ideal case – exact
data sets endowed with flawless dissimilarity between
individual instances. In practice however, these cases are
in the minority, and clustering applications are typically
characterized by noisy data sets with approximate pairwise
dissimilarities. As such, the efficacy of clustering methods
necessitates robustness to perturbations. In this paper, we
address foundational questions on perturbation robustness,
studying to what extent can clustering techniques exhibit
this desirable characteristic. Our results also demonstrate
the type of cluster structures required for robustness of
popular clustering paradigms.

I. INTRODUCTION

Clustering is a popular data mining tool, due in no
small part to its general and intuitive goal of dividing
data into groups of similar items. Yet in spite of the
seeming simplicity of this task, successful application of
clustering techniques in practice is oftentimes challeng-
ing. In particular, there are inherent difficulties in the
data collection process and design of pairwise dissimi-
larity measures, both of which may significantly impact
the behavior of clustering algorithms.

Intuition about clustering often reflects the ideal case –
flawless data sets with well-suited dissimilarity between
individual instances. In practice, however, these cases
are rare. Errors are introduced into a data set for a
wide variety of reasons, from precision of instruments
(a student’s ruler to the Large Hadron Collider alike
have a set precision) to human error when data is user-
reported (common in the social sciences). Additionally,
the dissimilarity between pairwise instances is often
based on heuristic measures, particularly when non-
numeric attributes are present. Furthermore, the dynamic
nature of prominent clustering applications (such as per-
sonalization for recommendation systems) implies that
by the time the data has been clustered, it has already
changed.

The ubiquity of flawed input poses a serious challenge.
If clustering is to operate strictly under the assumption
of ideal data, its applicability would be reduced to fairly

rare applications where such data can be attained. As
such, it would be desirable for clustering algorithms to
provide some qualitative guarantees about their output
when partitioning noisy data. This leads us to explore
whether there are any algorithms for which such guar-
antees can be provided.

Although data can be faulty in a variety of ways, our
focus here is on inaccuracies of pairwise distances. At a
minimum, small perturbation to data should not radically
affect the output of an algorithm. It would be natural to
expect that some clustering techniques are more robust
than others, allowing users to rely on perturbation robust
techniques when pairwise distances are inexact.

In this paper, we investigate foundational questions
concerning perturbation robustness, starting by asking
which algorithms possess this property. However, our
investigation reveals that no reasonable clustering algo-
rithm exhibits this desirable characteristic. In fact, both
additive and multiplicative perturbation robustness are
unrealistic requirements. We show that no clustering
algorithm can satisfy robustness to perturbation without
violating even more fundamental requirements. Not only
do existing methods lack this desirable characteristic, but
our findings also preclude the possibility of designing
novel perturbation robust clustering methods.

Perhaps it is already surprising that no reasonable
clustering algorithm can be perfectly perturbation robust,
but our results go further. Instead of requiring that the
clustering remain unchanged following a perturbation,
we allow up to four-ninths of all pairwise cluster rela-
tionships to change (from in-cluster to between-cluster,
or vice-versa). It turns out that this substantial relaxation
doesn’t overcome our impossibility theorem.

Luckily, further exploration paints a more optimistic
picture. A careful examination of this issue requires a
look back to the underlying goal of clustering, which is
to discover clustering structure in data when such struc-
ture is present. Our investigation suggests that sensitivity
to small perturbations is inevitable only on unclusterable
instances, for which clustering is inherently ill-suited. As
such, it can be argued that whether an algorithm exhibits
robustness on such data is inconsequential.



On the other hand, we show that when data is en-
dowed with inherent structure, existing methods can
often successfully reveal that structure even on faulty
(perturbed) data. We investigate the type of cluster
structures required for the success of popular clustering
techniques, showing that the robustness of k-means and
related methods is directly proportional to the degree of
inherent cluster structure. Similarly, we show that popu-
lar linkage-based techniques are robust when clusters are
well-separated. Furthermore, different cluster structures
are necessary for different algorithms to exhibit robust-
ness to perturbations.

A. Previous work

This work follows a line of research on theoretical
foundations of clustering. Efforts in the field began
as early as the 1970s with the pioneering work of
Wright [25] on axioms of clustering, as well analysis of
clustering properties by Fisher et al [17] and Jardine et
al [20], among others. This field saw a renewed surge of
activity following Kleinberg’s [21] famous impossibility
theorem, when he showed that no clustering function
can simultaneously satisfy three simple properties. Also
related to our work is a framework for selecting cluster-
ing methods based on differences in their input-output
behavior [4, 2, 20, 26, 3, 5] as well as research on
clusterability, which aims to quantify the degree of
inherent cluster structure in data [13, 1, 12, 9, 22].

Previous work on perturbation robustness studies it
from a computational perspective by identifying new
efficient algorithms for robust instances [15, 1, 8, 11].
Ben-David and Reyzin [14] recently studied correspond-
ing NP-hardness lower bounds. Our analysis of estab-
lished methods is an essential complement to efforts in
algorithmic development, as the need for understanding
established methods is amplified by the fact that most
clustering users rely on a small number of well-known
techniques. Further, we consider a generalized notion
of perturbation robustness as well as prove when this
property fails to hold.

Another line of research considers how clustering
algorithms behave in the presence of outliers and noise
[10, 5, 16, 18, 19]. Please note that robustness to a small
number of additional points is a distinct characteristic
from perturbation robustness, which we consider here.

II. DEFINITIONS AND NOTATION

Clustering is a wide and heterogeneous domain. For
most of this paper, we focus on a basic sub-domain
where the input to a clustering function is a finite set
of points endowed with a between-points dissimilarity

function and the number of clusters (k), and the output
is a partition of that domain.

A dissimilarity function is a symmetric function d :
X×X → R+, such that d(x, x) = 0 for all x ∈ X . The
data sets that we consider are pairs (X, d), where X is
some finite domain set and d is a dissimilarity function
over X . A k-clustering C = {C1, C2, . . . , Ck} of a data
set X is a partition of X into k disjoint subsets (or,
clusters) of X (so,

⋃
i

Ci = X). A clustering of X is a

k-clustering of X for some 1 ≤ k ≤ |X|.
For a clustering C, let |C| denote the number of clusters

in C and |Ci| denote the number of points in a cluster
Ci. For a domain X , |X| denotes the number of points
in X , which we denote by n when the domain is clear
from context. We write x ∼C y if x and y are both in
some cluster Cj ; and x 6∼C y otherwise. The relationship
x ∼c y is an equivalence relation.

The Hamming distance between clusterings C and C′
of the same domain set X is defined by

∆(C, C′) =
|{{x, y} ⊂ X | (x ∼C y)⊕ (x ∼C′ y)}|(|X|

2

) ,

where ⊕ denotes the logical XOR operation. That is, the
difference is the number of edges that disagree, being in-
cluster in one of the clusterings and between-cluster in
the other. The maximum distance between clusterings is
when the Hamming distance is 1. Lastly, we formally
define clustering functions.

Definition 1 (Clustering function). A clustering function
is a function F that takes as input a pair (X, d) and a
parameter 1 ≤ k ≤ |X|, and outputs a k-clustering of
the domain X .

III. ROBUSTNESS AS A PROPERTY OF AN ALGORITHM

Whenever a user is faced with the task of clustering
faulty data, it would be natural to select an algorithm
that is robust to perturbations of pairwise dissimilarities.
As such, we begin our study of perturbation robustness
by casting it as a property of an algorithm. If we could
classify algorithms based on whether or not (or to what
degree) they are perturbation robust, then clustering users
could incorporate this information when making deci-
sions regarding which algorithms to apply on their data.
First, we define what it means to perturb a dissimilarity
function.

Definition 2 (ε-additive perturbation of a dissimilarity
function). Given a pair of dissimilarity functions d and
d′ over a domain X , d′ is an ε-additive perturbation of
d, for ε > 0, if for all x, y ∈ X , d(x, y)−ε ≤ d′(x, y) ≤
d(x, y) + ε.
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Multiplicative perturbation of a dissimilarity function
is defined analogously. It is important to note that all
of our results hold for both additive and multiplicative
perturbation robustness. Perturbation robust algorithms
should be invariant to data perturbations; that is, if data
is perturbed, then the output of the algorithm shouldn’t
change. This view of perturbation robustness is not only
intuitive, but is also based on previous formulations [23,
15, 8] (This can be formalized as a property of clustering
functions by setting δ = 0 in Definition 3 below).

From a practical point of view, it is likely that a user
who has a possible perturbation of the true data set is
likely to be satisfied with an approximately correct solu-
tion. This notion is similar to that used in [11]. As such,
we introduce a relaxation that allows some error in the
output of the algorithm on perturbed data. Multiplicative
perturbation robustness is defined analogously.

Definition 3. A clustering function F is (ε, δ)-additive
perturbation robust if, given any data set (X, d) and 1 ≤
k ≤ |X|, whenever d′ is an ε-additive perturbation of d,
∆(F(X, d, k),F(X, d′, k)) ≤ δ.

A. Impossibility theorem for clustering functions

We now proceed to show that perturbation robustness
is too strong a requirement for clustering algorithms, and
as such neither existing nor novel techniques can have
this desirable characteristic.

Particularly notable is that the impossibility results
persist when δ is as high as 4/9, meaning that a
perturbation is allowed to change up to four-ninths of
all pairwise distances from in-cluster to between-cluster,
or vise-versa. As such, we show that no reasonable
clustering algorithm can preserve five-ninths or more of
its pairwise distances after a perturbation.

The following impossibility result derives from the
pioneering work of Wright [25] on axioms of clustering.
Wright originally proposed his axioms in Euclidean
space, here we generalize them for arbitrary pairwise
dissimilarities. The first axiom we discuss follows from
Wright’s 11th axiom. Considering an elementary sce-
nario, it requires that given exactly three points, an
algorithm asked for two clusters should group the two
closest elements.

Definition 4 (Three-body rule). Given a data set X =
{a, b, c}, if d(a, b) > d(b, c) and d(a, c) > d(b, c), then
F(X, d, 2) = {{a}, {b, c}}.

Wright’s 6th axiom requires that replicating all data
points by the same number should not change the
clustering output. We replicate a point x by adding a
new element x′ and setting d(x′, y) = d(x, y), ∀y ∈ X .

Definition 5 (Replication invariance). Given any positive
integer r, if all points are replicated r times, then the
partitioning of the original data is unchanged and all
replicas lie in the same cluster as their original element.

Not only are these two axioms natural, as violating
them leads to counterintuitive behavior, but they also
hold for common techniques. It is easy to show that they
are satisfied by common clustering paradigms, including
cost-based methods such as k-means, k-median, and k-
medoids, as well as linkage-based techniques, such as
single-linkage, average-linkage and complete-linkage.

We now prove that no clustering function that satisfies
the three-body rule and replication invariance can be
perturbation robust. Furthermore, our result holds for all
values of δ ≤ 4/9. Note that the following result applies
to arbitrarily large data sets, for both multiplicative and
additive perturbations.

Theorem 1. For any δ ≤ 4/9 and ε > 0, there
is no clustering function that satisfies (ε, δ)-additive
perturbation robustness, replication invariance, and the
three-body rule. Further, the result holds for arbitrarily
large data.

Proof. We proceed by contradiction, assuming that there
exists a clustering function F that is replication invariant,
adheres to the three-body rule, and is (ε, δ)-additive
perturbation robust for some δ ≤ 4/9.

Consider a data set X = {a, b, c} with a distance
function d such that d(b, c) < d(a, b) < d(a, c)
and d(a, b) = d(b, c) + 0.5ε. By the three-body rule,
F(X, d, 2) = {{b, c}, {a}}. We now replicate each point
an arbitrary number of times, r, creating three sets
A,B,C such that all points that are replicas of the
point a and a itself belong to A and similarly for B
and C, referring to the new distance function as dr. By
replication invariance, F(A∪B∪C, dr, 2) = {B∪C,A}.

Next we apply an ε-additive perturbation to create a
distance function d′r such that d′r(a, b) < d′r(b, c) <
d′r(a, c) and d′r(c, b) = d′(b, a) + 0.5ε ∀a ∈ A, b ∈
B, c ∈ C. By the three-body rule, F(A∪B∪C, d′r, 2) =
{B ∪ A,C}, and yet (ε, 4/9)-additive perturbation ro-
bustness requires that the Hamming distance between
F(A ∪ B ∪ C, dr, 2) and F(A ∪ B ∪ C, d′r, 2) be less
than or equal to 4/9. The number of in/out cluster rela-
tionships that change is 2(n3 )2. The Hamming distance

between the two clusterings will be 2(n
3 )2

(n
2)

= 4n
9(n−1) .

Therefore for any n ∈ Z+, the Hamming distance will
be greater than 4/9.
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IV. ROBUSTNESS AS A PROPERTY OF DATA

The above section demonstrates an inherent limitation
of perturbation robustness as a property of clustering
algorithms, showing that no reasonable clustering algo-
rithm can exhibit this desirable characteristic. However,
it turns out that perturbation robustness is possible to
achieve when we restrict our attention to data endowed
with inherent structure.

As such, perturbation robustness becomes a property
of both an algorithm and a specific data set. We intro-
duce a definition of perturbation robustness that directly
addresses the underlying data.

Definition 6 ((ε, δ)-additive perturbation robustness of
data). A data set (X, d) satisfies (ε, δ)-additive pertur-
bation robustness with respect to clustering function F
and 1 ≤ k ≤ |X|, if for any d′ that is an ε-additive
perturbation of d, ∆(F(X, d, k),F(X, d′, k)) < δ.

Multiplicative perturbation robustness of data is de-
fined analogously. This perspective at perturbation ro-
bustness raises a natural question: On what types of
data are algorithms perturbation robust? Next, we ex-
plore the type of structures that allow popular cost-
based paradigms and linkage-based methods to uncover
meaningful clusters even when data is faulty.

A. Robustness of k-means and similar methods

We begin our study of data-dependent perturbation
robustness by considering cluster structures required
for perturbation robustness of one of the most popular
clustering functions, k-means. Recall that k-means [24]
finds the clustering C = {C1, . . . , Ck} that minimizes∑k
i=1

∑
x∈Ci

d(x, ci)
2, where ci is the center of mass

of cluster Ci.
Many different notions of clusterability have been

proposed in prior work [1, 13]. Although they all aim to
quantify the same tendency, it has been proven that no-
tions of clusterability are often pairwise inconsistent [1].
As such, care must be taken when selecting amongst
them.

In order to analyze k-means and related functions,
we turn our attention to an intuitive cost-based notion,
which requires that clusterings of near-optimal cost be
structurally similar to the optimal solution. That is, this
notion characterizes clusterable data as that which has a
unique optimal solution in a strong sense, by excluding
the possibility of having radically different clusterings of
similar cost. See Figure 1 for an illustration.

This property, called “uniqueness of optimum” 1 and
closely related variations were investigated by [12], [22],

1This notion of clusterability appeared under several different names.
The term “uniqueness of optimum” was coined by Ben-David [13].

Fig. 1. An illustration of the uniqueness of optimum notion of
clusterability for two clusters. Consider k-means, k-medoids, or min-
sum. The highly-clusterable data depicted in (a) has a unique optimal
solution, with no structurally different clusterings of near-optimal cost.
In contrast, (b) displays data with two radically different clusterings
of near-optimal cost, making this data poorly-clusterable for k = 2.

[7] and [5], among others. See [12] for a detailed
exposition.

Definition 7 (Uniqueness of optimum). Given a cluster-
ing function F , a data set (X, d) is (δ, c, c0, k)-uniquely
optimal if for every k-clustering C of X where cost(C) ≤
c · cost(F(X, d, k)) + c0, ∆(F(X, d, k), C) < δ.

We show that whenever data satisfies the uniqueness
of optimum notion of clusterability, k-means is per-
turbation robust. Furthermore, the degree of robustness
depends on the extent to which the data is clusterable.

For the following proofs we will use costd(C) to
denote the cost of clustering C with the distance function
d. We now show the relationships between uniqueness of
optimum and perturbation robustness for k-means. The
following theorem shows that if data is clusterable, then
it is also perturbation robust.

Theorem 2. Consider the k-means clustering function
and a data set (X, d). If (X, d) is (δ, c, c0, k)-uniquely
optimal, then it is also (ε, δ, k)-additive perturbation
robust for all ε < min( c−12 , −M+

√
M2+4Mc0
2M ), where

M =
(
n
2

)
.

Proof. Consider a data set (X, d, k), and let d′ be any
ε-additive perturbation of d. We let C = F(X, d, k),
and let C′ = F(X, d′, k). These corresponds to the
optimal clustering of (X, d, k) and (X, d′, k). We then
calculate the k-means cost of C given distance function
d′. The k-means objective function is equivalent to∑k
i=1

1
|Ci|

∑
x,y∈Ci

d(x, y)2[22]. After an additive per-
turbation, any pairwise distance, d(x, y), is bounded by
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d(x, y) + ε. It therefore follows that:

costd′ (C
′
) ≤ costd′ (C)

≤
k∑

i=1

∑
{x,y}⊆Ci

1

|Ci|

[
d(x, y)

2
+ 2d(x, y)ε+ ε

2
]

=

k∑
i=1

∑
{x,y}⊆Ci

1

|Ci|
d(x, y)

2

+

k∑
i=1

∑
{x,y}⊆Ci

1

|Ci|
2d(x, y)ε+

k∑
i=1

∑
{x,y}⊆Ci

1

|Ci|
ε
2
.

The first term, is equivalent to costd(C). We deal with
the second term in by defining two sets S1 and S2.
To define S1, we first define S1i. S1i = {{x, y} ⊆
Ci|d(x, y) > 1}. Then S1 = {S1i|1 ≤ i ≤ k}. Similarly
S2i = {{x, y} ⊆ Ci|d(x, y) ≤ 1}, and S2 = {S2i|1 ≤
i ≤ k}. Therefore,

∑k
i=1

∑
{x,y}⊆Ci

1
|Ci|2d(x, y)ε

≤
k∑

i=1

∑
{x,y}∈S1i

1

|Ci|
2d(x, y)ε+

k∑
i=1

∑
{x,y}∈S2i

1

|Ci|
2d(x, y)ε.

Because for all {x, y} ∈ S1i for all 1 ≤ i ≤ k,
d(x, y) > 1, we can square the d(x, y) value in the first
term while only increasing the total value. Likewise, we
can replace the d(x, y) value in the second term with
1 while only increasing the total value. This produces:∑k
i=1

∑
{x,y}⊆Ci

1
|Ci|2d(x, y)ε ≤

k∑
i=1

∑
{x,y}∈S1i

1

|Ci|
2d(x, y)2ε+

k∑
i=1

∑
{x,y}∈S2i

1

|Ci|
2ε.

Since S1i and S2i both consist of point pairs
in Ci and we are looking for an upper bound:∑k
i=1

∑
{x,y}⊆Ci

1
|Ci|2d(x, y)ε ≤

k∑
i=1

∑
{x,y}⊆Ci

1

|Ci|
2d(x, y)2ε+

k∑
i=1

∑
{x,y}⊆Ci

1

|Ci|
2ε.

Note that
∑k
i=1

∑
{x,y}⊆Ci

1
|Ci|2d(x, y)2ε is equiva-

lent to 2εcostd(C). We can now return to the original
inequality: costd′(C′) ≤ costd′(C) ≤ (1+2ε)costd(C)+∑k
i=1

∑
{x,y}⊆Ci

1
|Ci|2ε+

∑k
i=1

∑
{x,y}⊆Ci

1
|Ci|ε

2. Con-
sidering the minimum and maximum cluster sizes it fol-
lows that costd′(C′) ≤ costd′(C) ≤ (1 + 2ε)costd(C) +(
n
2

)
(2ε + ε2). Then, c ≥ 1 + 2ε, so ε ≤ c−1

2 . Similarly,
c0 ≥ M(ε2 + 2ε), so ε ≤ −M+

√
M2+4MC0

2M where
M =

(
n
2

)
. So, ε < min( c−12 , −M+

√
M2+4MC0

2M ).

Similar results hold for multiplicative perturbations
and other centroid based objective functions (specifically
k-mediods and min-sum) in both the additive and mul-
tiplicative cases, but are omitted for brevity.

B. Perturbation robustness of Linkage-Based algorithms

We now move onto Linkage-Based algorithms, which
in contrast to the methods studied in the previous section,
do not seek to optimize an explicit objective function.

Instead, they perform a series of merges, combining
clusters according to their own measure of between-
cluster distance. Given clusters A,B ⊆ X , the following
are the between-cluster distances of some of the most
popular Linkage-Based algorithms:
• Single linkage: mina∈A,b∈B d(a, b)

• Average linkage:
∑
a∈A,b∈B

d(a,b)
(|A|·|B|)

• Complete linkage: maxa∈A,b∈B d(a, b)

We consider Linkage-Based algorithms with the k-
stopping criterion, which terminate an algorithm when
k clusters remain, and return the resulting partitioning.
Because no explicit objective functions are used, we
cannot rely on the uniqueness of optimum notion of
clusterability. To define the type of cluster structure on
which Linkage-Based algorithms exhibit perturbation ro-
bustness, we introduce a natural measure of clusterability
based on a definition by Balcan et al [9]. The original
notion required data to contain a clustering where every
element is closer to all elements in its cluster than to all
other points. This notion was also used in [2], [23], and
[6].

Definition 8 ((ε, k)-Strictly Additive Separable). A data
set (X, d) is (ε, k)-Strictly Additive Separable if there
exists a unique clustering C = {C1, . . . , Ck} of X so
that for all i 6= j and all x, y ∈ Ci, z ∈ Cj , d(x, y)+ε ≤
d(x, z).

The definition for (α, k)-strictly multiplicative sepa-
rable is analogous. We now show that whenever data
is strictly separable, then it is also perturbation robust
with respect to some of the most popular Linkage-Based
algorithms. A similar result holds for multiplicative
perturbation robustness. Proofs are omitted for brevity.

Theorem 3. Single-Linkage, Average-Linkage, and
Complete-Linkage are (ε, 0)-perturbation robust on all
(2ε, k)-strictly additive separable data sets.

V. CONCLUSIONS

As a property of an algorithm, perturbation robustness
fails in a strong sense, contradicting even more funda-
mental requirements of clustering functions. As such, no
algorithm can exhibit this desirable characteristic on all
data sets. Notably, this result persists even if we allow
four-ninths of all pairwise distance to change following
a perturbation.

However, a more optimistic picture emerges when
considering clusterable data, and we show that popu-
lar paradigms are able to discover some cluster struc-
tures even on faulty data. Further, different clustering
techniques are perturbation robust on different clus-
ter structures. This has important implications for the
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“user’s dilemma,” which is the problem of selecting a
suitable clustering algorithm for a given task. Faced
with the challenge of clustering data with imprecise
dissimilarities between pairwise entities, a user cannot
simply elect to apply a perturbation robust technique
as no such methods exist, and as such the selection of
suitable methods calls for some insight on the underlying
structure of the data.
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