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Abstract

We investigate measures of the clusterabil-
ity of data sets. Namely, ways to define how
‘strong’ or ‘conclusive’ is the clustering struc-
ture of a given data set. We address this
issue with generality, aiming for conclusions
that apply regardless of any particular clus-
tering algorithm or any specific data genera-
tion model.
We survey several notions of clusterability
that have been discussed in the literature, as
well as propose a new notion of data cluster-
ability.
Our comparison of these notions reveals that,
although they all attempt to evaluate the
same intuitive property, they are pairwise in-
consistent.
Our analysis discovers an interesting phe-
nomenon; Although most of the common
clustering tasks are NP-hard, finding a close-
to-optimal clustering for well clusterable data
sets is easy (computationally). We prove in-
stances of this general claim with respect to
the various clusterability notions that we dis-
cuss.
Finally, we investigate how hard it is to deter-
mine the clusterability value of a given data
set. In most cases, it turns out that this is
an NP-hard problem.

1 Introduction

Clustering is at the same time a very basic and an im-
mensely useful task. However, in spite of hundreds of
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clustering papers being published every year, its the-
oretical foundations are distressingly meager. Clearly,
it is very difficult to develop a theory of clustering at
a level of generality that will make it relevant across
different applications and algorithmic approaches. In
this paper we try to take a step in that direction by
investigating possible formalizations of the central and
intuitive notion of clusterability of data sets.

The aim of clustering is to uncover meaningful parti-
tions in data; however, not all data sets have meaning-
ful partitions. Clusterability is a measure of clustered
structure in a data set. So far, clusterability has been
used only peripherally and with no theoretical support.
We initiate a theoretical study of clusterability. We
address this issue with generality, aiming for conclu-
sions that apply regardless of any particular clustering
algorithm or any specific data generation model.

We survey several notions of clusterability that have
been discussed in the literature (some less explicitly
than others), as well as propose a new notion of data
clusterability. It turns out that, while all of these no-
tions aim to capture the same intuitive concept, they
are pairwise incompatible. For any pair of different
notions there are data sets that are well clusterable by
one notion but are poorly clusterable with respect to
the other notion.

Our analysis of these notions gives rise to an interest-
ing computational phenomenon; Well clusterable data
sets are feasibly clusterable. We prove such claims
for data sets that are well clusterable with respect to
the clusterability notions we discuss. These results
project on the fundamental question of evaluating the
relevance to “real life” of the theory of worst-case-
complexity. The ultimate strengthening of our result
amounts to stating that “if a data set is hard to cluster
then it is does not have a meaningful clustering struc-
ture”, or that the hard cases that render clustering
NP-hard are the inputs we don’t care to cluster1.

1This may resemble the situation with the basic Propo-



Clusterability: A Theoretical Study

Finally, we investigate how hard is it to determine the
clusterability of a data set. The hardness of deter-
mining clusterability has practical implications since
notions of clusterability (at least the ones presented
here) can be used to determine the difficulty of find-
ing a good clustering. For each notion, we find the
hardness of determining whether the clusterability of
a data set exceeds a given threshold. In most cases, it
turns out that this is an NP-hard problem.

We begin by presenting our new notion of clusterabil-
ity, showing that data sets that are clusterable accord-
ing to that notion are computationally feasible to clus-
ter well. Next, we illustrate this phenomenon using
previously proposed notions of clusterability, proving
new results and and showing how previous results sup-
port our hypothesis. In Section 4, we discuss the pair-
wise comparison of notions of clusterability. Finally,
in Section 5, we investigate how hard it is to determine
the clusterability value of a given data set.

2 Framework and definitions

A k-clustering of data set X is a k-partition of X, that
is, a set of k non-empty, disjoint subsets of X such that
their union is X. A clustering of X is a k-clustering
of X for some k ≥ 1. For x, y ∈ X and clustering C of
X, x ∼C y whenever x and y are in the same cluster
with respect to C, and x 6∼C y, otherwise.

A notion of clusterability is a function that takes a data
set X ⊆ Rm, and returns a real value.2 This function
is suppose to represent how ‘strong’ or ‘conclusive’ is
the clustering structure of the data set.

A clustering C = {X1, X2, . . . , Xk} of X ⊆ Rm is
center-based if there exist points c1, c2, . . . , ck ∈ Rm,
such that for all i, for all x ∈ Xi and all j 6= i,
‖x− ci‖ ≤ ‖x− cj‖. The set of such points c1, . . . , ck
is called a set of centers for the clustering C. The
Voronoi partition induced by the centers of a cluster-
ing coincides with that clustering partition. While a
partition may not have a set of centers inducing it,
center-based clusterings always do.

Given a loss function L, we let

OPTL,k(X) = min{L(C) | C a k-clustering of X},

the loss of a k-clustering of X that minimizes L.

sitional Satisfiability problem, that, in spite of being the
prime example of an NP-hard problem, has recently been
the focus of booming industrial developments of SAT
solvers that efficiently solve many large-scale practical
problems.

2Some of our results extend beyond Euclidean space.
For clarity of exposition, we have chosen to use Euclidean
space throughout.

3 Clustering of well-clusterable data

Our analysis of notions of clusterability gives rise to
an interesting phenomenon: Well-clusterable data sets
are computationally easy to cluster.

Our first demonstration of this phenomenon is through
a new notion of clusterability. We present a new notion
of clusterability for center-based clustering, and show
that using this notion, whenever a data set is well-
clusterable, a provably near-optimal clustering can be
computed efficiently. Next, we show that this phe-
nomenon extends to previously known notions of clus-
terability, proving new results, as well as showing how
previous results support our hypothesis.

The notions of clusterability that we explore fall into
two broad categories. One of these categories is based
on the concept of a clustering-quality measure, which
is function that takes a clustering and returns a real
number indicating how good or cogent is the cluster-
ing. Note that a clustering-quality measure evaluates
the quality of a specific clustering, whereas a notion
of clusterability evaluates the clustering tendency of
a data set. For a study of clustering-quality mea-
sures, see (Ackerman and Ben-David, 2008). Given a
clustering-quality measure m, we can define the clus-
terability of a data set X to be the optimal quality
of a clustering of X. Such notions treat the cluster-
ings that optimize clustering-quality measures as the
optimal clusterings.

The second category of notions of clusterability are
ones defined with respect to a clustering loss (or, ob-
jective) function used to drive clustering algorithms
(such as k-means or k-median). These clusterability
notions are often used in settings where the optimal
clustering is defined to be the clustering optimizing
such a loss function. We will discuss a few different
ways of formalizing clusterability of this type.

3.1 Center perturbation clusterability

We introduce a new notion of clusterability aiming to
capture the clustering robustness to center perturba-
tions. This notion provides a distinctly different per-
spective at clusterability evaluation than previous no-
tions. Center perturbation clusterability is used in
conjunction with loss functions whose optimal clus-
terings are center-based.

Consider what happens if the centers of a center-based
clustering are slightly perturbed. Are points still going
to be closer to the perturbed centers of their clusters?
If we re-cluster the data using the perturbed centers,
how much does the loss of the clustering change? If the
optimal clustering is “good”, we expect such change to
have little effect on clustering loss. That is, if the data
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set is well-clusterable, the optimal clustering should be
robust to (small) center perturbations.

ε-close Two center-based clusterings, C and C ′ of X,
are ε-close, if there exist centers c1, c2, . . . , ck of C,
and centers c′1, c

′
2, . . . , c

′
k of C ′, such that for all i ≤ k,

‖ci − c′i‖ ≤ ε.

Center Perturbation Clusterability A data set X is
(ε, δ)-CP clusterable for k (for ε, δ ≥ 0), if for every
clustering C of X that is ε-close to some optimal k-
clustering of X, L(C) ≤ (1 + δ)OPTL,k(X).

We now prove that whenever data is well-clusterable
by center perturbation, a provably near-optimal clus-
tering can be computed efficiently, where an optimal
clustering is a clustering minimizing the loss function.
This is in contrast with the situation for arbitrary in-
put, where, for more interesting loss functions (like
k-means) optimal solutions are NP-hard to approxi-
mate.

Let rad(X) denote the radius of the minimum hyper-
sphere that contains all the points in X (we use the
radius of X to normalize the measure to ensure scale
invariance).

Theorem 1 Given a data set X ⊆ Rm on n points,
there exists an algorithm such that, for every fixed k ≥
2 and δ ≥ 0, if X is ( rad(X)√

`
, δ)-CP clusterable for k,

then the algorithm runs in time polynomial in n, and
outputs a clustering C of X with at most k clusters,
such that

L(C) ≤ (1 + δ)OPTL,k(X).

Moreover, this result holds for any loss function L
where all optimal clusterings are center-based (an op-
timal k-clustering is a k-clustering minimizing L).

We present an algorithm for finding a clustering that
is ε-close to an optimal clustering. The algorithm is
based on an algorithm by (Ben-David et al., 2002). If
we know the (ε, δ)-CP clusterability of X, then we can
lower bound the quality of the clustering found by the
algorithm.

Let an `-sequence denote a collection of ` elements of
X (not necessarily distinct). The algorithm iterates
through all k-tuples of `-sequences. For each such tu-
ple, it finds the clustering induced by the centers of
mass of the `-sequences. It then chooses the clustering
with minimal loss.

Algorithm 1 Finding near optimal clusterings
INPUT: A data set X, k ≥ 1, ` ≥ 1.
OUTPUT: Outputs a clustering CA of X such that

L(CA) ≤ min{L(C) | C ∈ C}, where C is the set of all
k-clusterings of X that are rad(X)√

`
-close to any optimal

k-clustering of X.

1. CA = ∅

2. for each k-tuple of `-sequences;

(a) find the centers of mass of the `-sequences,
call this set S

(b) find the clustering Ĉ that S induces on X

(c) if CA = ∅ or L(Ĉ) < L(CA) then set CA = Ĉ

3. return CA

To prove Theorem 1, we use the following result by
Maurey.

Theorem 2 (Maurey, 1981) For any fixed ` ≥ 1
and each x′ in the convex hull of X, there exist
x1, x2, . . . , x` ∈ X such that ‖x′ − 1

`

∑`
i=1 xi‖ ≤

rad(X)√
`

.

Note that x1, x2, . . . , x` are not necessarily distinct
from each other. We now prove Theorem 1.

Proof of Theorem 1

Proof By Maurey’s result, there is a clustering, Ĉ,
examined by Algorithm 1, that is rad(X)√

`
-close to an

optimal clustering of X. Since Algorithm 1 selects
the minimal loss clustering of the ones it reviews,
L(CA) ≤ L(Ĉ). Since Ĉ is R√

`
-close to an opti-

mal clustering of X, and X is ( R√
`
, δ)-CP clusterable,

L(CA) ≤ L(Ĉ) ≤ (1 + δ)OPTL,k(X). The running
time of Algorithms 1 is O(kmn`k+1). To see that, ob-
serve that there are O(n`k) k-tuples of `-sequences,
and that for each k-tuple of `-sequences the algorithm
does O(kmn) operations. Note that, since a clustering
induced by k centers has at most k clusters, Algorithm
1 returns a clustering with no more than k clusters (for
most common loss functions, including k-means, any
subdivision of clusters improves the loss of a cluster-
ing).

3.2 Worst pair ratio clusterability

Worst pair ratio is an example of a notion of cluster-
ability that is based upon a clustering-quality measure.
Let the minimum distance between two points in dif-
ferent clusters of a clustering C be the split between
the two clusters. Let the maximum distance between
two points within a cluster in C be the width of the
cluster. We can then evaluate the quality of a cluster-
ing by its split over width ratio. The clustering-quality
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measure worst pair ratio is

WPR(C,X) =
splitC(X)
widthC(X)

.

Note that worst pair ratio clusterability is based on a
definition by (Epter et al.).

Worst Pair Ratio Clusterability The worst pair
ratio of X with respect to k is

WPRk(X) = max{WPR(C,X) | C a k-clustering of X}.

We now prove that good worst pair ratio clusterabil-
ity implies that a good clustering can be efficiently
computed. In this case, a good clustering is one that
is good according to the underlying quality measure,
WPR(C,X). In particular, we show that when worst
pair ratio clusterability is sufficiently high, then the
clustering that optimizes the worst pair ratio quality
measure can be easily found.

First, we show that there is at most one k-clustering
of a data set with split strictly greater than width.

Lemma 1 If there exists a k-clustering C of X, for
k ≥ 2, such that widthC(X) < splitC(X), then there
is only one such clustering.

Proof Assume that there are two distinct clusterings
C and C ′ ofX, each with exactly k non-empty clusters,
such that widthC(X) < splitC(X) and widthC′(X) <
splitC′(X). If splitC(X) = splitC′(X), then C = C ′,
since each pair of points belong to the same cluster if
and only if their distance is less than the split of the
clustering. Assume, without loss of generality, that
splitC(X) < splitC′(X). Then every pair of points
that belong to the same cluster in C also belong to
the same cluster in C ′. In addition, there is a pair of
points that belong to the same cluster in C ′ but not in
C (merging two clusters in C). So C ′ has fewer non-
empty clusters than C, thus it is not a k-clustering.

Theorem 3 Given a data set X where WPRk(X) ≥
1 for some k ≥ 2, we can find the k-clustering C with
the maximum split over width ratio in O(n2 log n) op-
erations, where n = |X|.

Proof Let C be a k-clustering that maximizes
WPR(C,X), over all k-clusterings of X. Then
widthC(X) < splitC(X). By Lemma 1, C is the
unique clustering with the width strictly small than
the split of the clustering.

We can run the single linkage algorithm to recover C.
That is, sort the pairs of points in X based on pairwise
distances, and put pairs of points in the same clusters,

starting with the pair with minimal distance and going
up the list until exactly k clusters are formed. Since
widthC(X) < splitC(X), the procedure terminates,
finding C, when all edges of length at most widthC(X)
have been marked as within cluster edges. This takes
O(n2 log n) operations.

3.3 Separability clusterability

Separability is another notion of clusterability that
evaluates the clusterability of a data set with respect
to a loss function, although it does that in a distinctly
different manner than center perturbation. Separabil-
ity captures how sharp is the drop in the loss function
when moving from a (k−1)-clustering to a k-clustering.
This notion was introduced by (Ostrovsky et al., 2006).

Separability was defined with respect to the
k-means loss function (although it clearly
applies with other loss functions as well),
k-means(C) =

∑k
i=1

∑
x∈Xi

‖x − center-mass(Xi)‖2,
where center-mass(X) = 1

|X|
∑
x∈X x.

Separability A data set X is (k, ε)-separable if
OPTk-means,k(X) ≤ εOPTk-means,k−1(X).

For convenience, we define Sk(X) to be the smallest ε
such that X is (k, ε)-separable. The range of separa-
bility is [0, 1), and a data set has better separability
than another data set if it is separable for smaller ε.

Ostrovsky et al. prove that given data with good sep-
arability clusterability, it is easy to find a clustering
with good k-means loss.

Theorem 4 (Theorem 3.4, (Ostrovsky et al., 2006))
Given a (2, ε2)-separable data set X ⊆ Rm, we can
find a 2-clustering with k-means loss at most OPT2(X)

1−ρ
with probability at least 1 − O(ρ) in time O(nm),
where ρ = Θ(ε2) and n = |X|.

For arbitrary k, (Ostrovsky et al., 2006) provide a sim-
ilar result.

3.4 Variance ratio clusterability

Variance ratio evaluates the clusterability of a data set
with respect to a normalized loss function. As such,
it belongs to both categories of clusterability notions
examines so far - notions defined in terms of loss func-
tions, and ones that set clusterability to the optimal
quality of a clustering.

Variance ratio measures the ratio of the variance
between clusters over the variance of points within
clusters. This notion was presented by (Zhang,
2001). Recall that the variance of X is σ2(X) =
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1
|X|
∑
x∈X ‖x − center-mass(X)‖2. Consider a clus-

tering C = {X1, X2, . . . , Xk}. Let pi = |Xi|
|X| . Let

BC(X) =
∑k
i=1 pi‖center-mass(Xi) − c‖2 denote

the between-cluster variance of a clustering C and
WC(X) =

∑k
i=1 piσ

2(Xi) the within-cluster variance
of a clustering C. The clustering-quality measure vari-
ance ratio is

V R(C,X) =
BC(X)
WC(X)

.

Variance Ratio Clusterability The variance ratio
of X for k is

V Rk(X) = max
C∈C

BC(X)
WC(X)

,

where C is the set of k-clusterings of X.

Observe that σ2(X) = WC(X)+BC(X) and WC(X) is
the loss function that k-means minimizes divided by n.
In addition, V Rk(X) = σ2(X)−WC(X)

WC(X) . Since σ2(X) is
constant over all clusterings of X, a clustering that op-
timizes the k-means loss function also optimizes vari-
ance ratio. For this reason, we can view variance ratio
as a normalization of the k-means loss function. We let
Wk(X) = WC(X) and Bk(X) = BC(X), where C is a
clustering that optimizes k-means objective function.

The range of variance ratio is [0,∞) and higher values
of variance ratio indicate better clusterability.

We prove that when variance ratio is good for two
clusters, a provably near-optimal clustering can be ef-
ficiently computed. In this context, an optimal cluster-
ing is one that optimizes the variance ratio clustering-
quality measure, or, equivalently, is it a clustering that
optimizes the k-means loss.

We make use of the result of (Ostrovsky et al., 2006)
stated in Theorem 4.

First, we show that variance ratio and separability are
equivalent for k = 2.

Lemma 2 V R2(X) = 1
S2(X) − 1 for any data set X.

Proof Let n = |X|. We know that σ2(X) = W2(X)+
B2(X), and W2(X) = OPT2(X)

n = S2(X)σ2(X). Thus,

V R2(X) = B2(X)
W2(X) = σ2(X)−W2(X)

W2(X) = σ2(X)−S2(X)σ2(X)
S2(X)σ2(X)

= 1
S2(X) − 1.

Combining Lemma 2 with Theorem 4, we get that a
data set with good variance ratio clusterability is easy
to cluster well.

Corollary 1 Given a data X ⊆ Rm, we can find a
2-clustering with k-means loss at most OPT2(X)

1−ρ with

probability at least 1−O(ρ) in time O(nm), where
ρ = Θ

(
1

(V R2(X)+1)2

)
.

3.5 Clusterability Assuming a Target
Clustering

The work of (Balcan et al., 2008), and (Balcan et al.,
2009) gives further evidence that well-clusterable data
is easy to cluster. In both papers, the authors assume
the existence of an unknown target clustering that the
user hopes to uncover or approximate.

3.5.1 Strict separation clusterability

Balcan, Blum, and Vempala look for properties of data
sets that enable efficient clustering, up to a list or tree.
That is, the goal is to find a list of clusterings contain-
ing all the clusterings that satisfy a certain property,
or, alternately, a tree whose prunings include all such
clusterings. In contrast, in our work, we have found
properties of data sets such that a single good cluster-
ing can be efficiently computed. In particular, good
clusterability according to center-perturbation, sepa-
rability, or variance ratio, means that a clustering that
approximates the optimal loss for certain loss func-
tions can be efficiently computed. For data sets with
sufficiently good worst pair ratio, a single clustering
optimizing the underlying clustering-quality measure
is easy to find.

Balcan et al. present the following property of a clus-
tering.

Strict Separation Property A clustering C =
{C1, C2, . . . , Ck} over data set X satisfies strict sep-
aration if every point is closer to every point in its
cluster, than to any point in another cluster. That is,
for any i and any x ∈ Ci, given any point y ∈ Ci and
z 6∈ Ci, x strictly closer to y than to z.

We can convert this property to a notion of cluster-
ability, as follows.

Strict Separation of a Clustering The Strict Sep-
aration of a clustering C over X is

StrS(C,X) = max
x∈X

maxx∼Cy ‖x− y‖
minx6∼Cy ‖x− y‖

.

Strict Separation Clusterability The Strict Sepa-
ration of X is

StrS(X) = min{StrS(C,X) | C a clustering of X}.

(Balcan et al., 2008) prove the following result, sup-
porting the hypothesis that well-clusterable data is
easy to cluster.
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Theorem 5 (Theorem 2, (Balcan et al., 2008))
If StrS(X) ≥ 1, then we can efficiently con-
struct a tree such that every clustering C where
StrS(C,X) ≥ 1 is a pruning of this tree.

3.5.2 Target clusterability

In “Approximate clustering without approximation,”
(Balcan et al., 2009) prove that clustering is easier if
we permit the assumption that approximate solutions
of certain clustering loss functions approximate the un-
known target clustering. This assumption can be used
to formulate a notion of clusterability. We now present
their results (rephrasing them in the context of clus-
terability).

Given the target clustering C, let the error of cluster-
ing C ′ be the number of points that it labels differently
than the target clustering (under the best permutation
of labels.)

(L, c, ε)-Target Clusterability A data set X satis-
fies (L, c, ε)-target clusterability if any near optimal
k-clustering C, where L(C) ≤ OPTL,k(X), has error
at most ε (with respect to the target clustering).

Target clusterability resembles the notions we exam-
ine that make use of loss functions. However, distinct
from these notions, target clusterability views the tar-
get clustering as the optimal clustering, which does
not necessarily optimize the loss function (although it
does approximate it).

(Balcan et al., 2009) prove that, for the loss functions
k-means, k-median, and min-sum, well-clusterability
by (L, c, ε)-target clusterability implies that the un-
derlying data set is computationally easy to cluster.
We present their result for the k-means loss function.

Theorem 6 (Theorem 10, (Balcan et al., 2009))
If a data set satisfies (k-means, 1 + α, ε)-target clus-
terability, then we can efficiently find a clustering that
is O(ε/α)-close to the target clustering.

4 Comparison of notions of
clusterability

We have performed a pairwise comparison of notions
of clusterability, finding that no two are equivalent.
In particular, we analyzed separability, variance ratio,
worst pair ratio, and center perturbation. For illus-
tration purposes, we present the detailed comparison
between variance ratio and separability. We omit the
remaining proofs due to lack of space, noting that the
proofs showing that no pair of notions are equivalent
are not difficult to obtain.

The comparison of variance ratio and separability re-
veals that good clusterability by separability implies
that variance ratio clusterability is good, however,
good clusterability according to variance ratio does not
imply good clusterability by separability.

Lemma 3 Wk(X) = S2(X)S3(X) · · ·Sk(X)σ2(X),
for any k ≥ 2 and X ⊆ Rm,

Proof The result holds for k = 2, since W2(X) =
OPTk-means,2(X)

|X| = S2(X)|X|σ2(X)
|X| = S2(X)σ2(X). As-

sume that the result holds for all j < k. Then,

Wk(X) =
1
|X|

OPTk-means,k(X)

=
1
|X|

Sk(X)OPTk-means,k−1(X)

=
1
|X|

Sk(X)|X|Wk−1(X)

= S2(X)S3(X) · · ·Sk(X)σ2(X)

Theorem 7 V Rk(X) = V Rk−1(X)+1
Sk(X) − 1, for k ≥ 3

and X ⊆ Rm.

Proof By Lemma 3, Wk(X) =
S2(X)S3(X) · · ·Sk(X)σ2(X). Then,

V Rk(X) =
Bk(X)
Wk(X)

=
σ2(X)−Wk(X)

Wk(X)

=
σ2(X)− S2(X)S3(X) · · ·Sk(X)σ2(X)

S2(X)S3(X) · · ·Sk(X)σ2(X)

=
1

S2(X)S3(X) · · ·Sk(X)
− 1

=
1

Sk(X)
· σ2(X)
Wk−1(X)

− 1

=
V Rk−1(X) + 1

Sk(X)
− 1

By the above result, we can show that good cluster-
ability by separability implies that variance ratio clus-
terability is good.

Theorem 8 V Rk(X) ≥ 1
Sk(X) − 1 for any k ≥ 2 and

data set X ⊆ Rm.

Proof By Theorem 7, for any k ≥ 3,

V Rk(X) =
V Rk−1(X) + 1

Sk(X)
− 1.
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Since V Rk−1(X) ≥ 0, this implies that V Rk(X) ≥
1

Sk(X) − 1. For k = 2, the result follows from Lemma
2.

We now show that good clusterability according to
variance ratio does not imply good clusterability by
separability.

Theorem 9 For any ε < 1, there is a data set X
and a k ≥ 3 such that Sk(X) ≥ ε and V Rk(X) is
arbitrarily high.

Proof It can be shown that there exists a k such
that Sk−1(X) ≥ ε for any ε < 1. Choose one such
data set. Then add another point sufficiently far away
from all other points in the data set, to increase the
between-cluster variance, making V Rk(X) arbitrarily
high. Place the added point sufficiently far so that it
has its own cluster in any optimal k-means and any
optimal (k − 1)-means clustering. Therefore, the re-
maining points have the same clustering in an opti-
mal k-means clustering as in an optimal (k−1)-means
clustering. The singleton cluster does not effect the
k-means loss or the (k − 1)-means loss, and therefore
Sk(X) = Sk−1(X) ≥ ε.

5 Computational complexity of
clusterability

We analyze the computational complexity of determin-
ing the clusterability of a data set. To the best of our
knowledge, this is the first computational complexity
analysis of notions of clusterability. The hardness of
determining clusterability has practical implications
since, as shown in Section 3, notions of clusterabil-
ity (at least the ones presented here) can be used to
determine the difficulty of finding a good clustering.

Our results show for when worst pair ratio is suf-
ficiently good, worst pair ratio clusterability can be
found in polynomial time. However, it is easy to see
that worst pair ratio is very sensitive to noise and out-
liers, and thus often assigns low clusterability to intu-
itively well-clusterable data sets. Therefore, good clus-
terability for worst pair ratio implies particularly clear
clustering structure. For separability and variance ra-
tio clusterability, which can detect clustered structure
in a wider range of circumstances, the problem of de-
termining the degree of clusterability is NP-hard.

5.1 Complexity of separability

We prove that determining whether the separabil-
ity clusterability of a given data set exceeds a given
threshold is an NP-hard problem.

Theorem 10 Given X ⊆ Rm, integer k ≥ 2, and
0 < ε < 1, it is NP-hard to determine whether X is
(k, ε)-separable.

Proof The decision version of the k-means problem is
as follows: Does there exist a k-clustering of X with
k-means loss at most v? This problem is NP-complete
for k ≥ 2 (Drineas et al., 2004).

A data set X is (2,ε)-separable if OPTk-means,2(X)
OPTk-means,1(X) ≤ ε.

Suppose that we could determine whether any set
X ⊆ Rm is (2,ε)-separable for any 0 < ε < 1
in polynomial-time. Then since OPTk-means,2(X) ≤
εOPTk-means,1(X), and OPTk-means,1(X) = |X|σ2(X)
can be found in polynomial-time, we can determine
whether OPTk-means,2(X) ≤ µ for any µ by checking if
X is (2,ε)-separable for ε = µ

OPTk-means,1(X) . But since
determining if OPTk-means,2(X) ≤ µ for any arbitrary
µ > 0 is NP-hard, determining if X is (2,ε)-separable
is NP-hard.

To show that the problem is NP-hard for any k ≥
3, we reduce the problem for k = 2 to the problem
for k ≥ 3. Given X, add k − 2 points sufficiently
far away from all points in X and from each other,
so that each one of the new points is its own cluster
in the k-means optimal clustering. Then in any k-
means optimal clustering, the remaining 2 clusters are
an optimal 2-means solution for the original data set.

5.2 Complexity of variance ratio

Determining the level of clusterability is also an NP-
hard problem for the variance ratio notion of cluster-
ability.

Theorem 11 Given X ⊆ Rm, k ≥ 2, and r > 0, it is
NP-hard to determine whether V Rk(X) ≥ r.

Proof We know that σ2(X) = Wk(X)+Bk(X). Then
V Rk(X) = Bk(X)

Wk(X) = σ2(X)−Wk(X)
Wk(X) = σ2(X)

Wk(X) − 1 =
|X|σ2(X)

OPTk-means,k(X) − 1.

Thus, if we can tell whether V Rk(X) =
|X|σ2(X)

OPTk-means,k(X) − 1 ≥ r for any r > 0, then we

can tell whether OPTk-means,k(X) ≤ |X|σ2(X)
r+1 . We

can find |X|σ2(X) in polynomial time. Also, by def-
inition of OPTk-means,k(X), OPTk(X) ≤ |X|σ2(X).
Thus, by setting r = |X|σ2(X)

v −1, we can find whether
OPTk-means,k(X) ≤ v for any v > 0. However, this
problem is NP-hard for k ≥ 2 (Drineas et al., 2004).

5.3 Complexity of worst pair ratio

We show that whenever worst pair ratio clusterabil-
ity is sufficiently good, then it can be determined in
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polynomial time.

Theorem 12 Given an integer k ≥ 2 and a data set
X ⊆ Rm where WPRk(X) > 1, we can determine the
worst pair ratio of X in polynomial-time.

Proof By Theorem 3, given a data set X on n points
where WPRk(X) > 1, a k-clustering C that maxi-
mizes the split over width ratio over all k-means opti-
mal clusterings of X can be found in O(n2 log n) oper-
ations. We can then find the split and width of C using
O(n2) additional operations, thus finding WPRk(X).

6 Conclusions

In this work, we present a theoretical study of cluster-
ability. We survey some previous notions of cluster-
ability, and present a new notion that captures clus-
tering robustness to center perturbations. Our com-
parison of these notions shows that, although they at-
tempt to measure the same intuitive property, they are
pairwise inconsistent.

Our analysis reveals an interesting property common
to these notions of clusterability: when a data set is
well-clusterable, it is computationally easy to find a
near optimal clustering of that data set. This phe-
nomenon occurs across provably distinct notions of
clusterability, and even different notions of clustering
optimality. It is intriguing to figure out how broad
this phenomenon is. In particular, it is an interesting
challenge to the research community to obtain simi-
lar results with other natural notions of clusterability.
Such results may help understand when certain clus-
tering algorithms perform well, and show that when
they fail to produce satisfactory clusterings, it is due
to insufficient clustering structure in the data.

We explore the hardness of determining the degree of
clusterability of a given data set using previous no-
tions of clusterability. Our analysis shows that, for the
notions that recognize a wide range of well-clustered
data, this is an NP-hard problem.

For future work, it would be interesting to explore the
problem of determining clusterability in the more flex-
ible framework of property testing. The goal of prop-
erty testing is to determine whether a given object has
a desired property or if the object is close to some other
object which has the property. The tester is allowed
to make mistakes on both positive and negative asser-
tions, with a certain probability. For more details on
property testing, see (Goldreich et al., 1998). Using
this setting, we pose the following question: given a
notion of clusterability, we ask how hard is it to deter-
mine whether the clusterability of a data set surpasses
a given threshold or if the data set is similar to some

data set that does.
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