
Towards Property-Based Classification of Clustering
Paradigms: Supplementary material

Anonymous Author(s)
Affiliation
Address

City, State/Province, Postal Code, Country
email

In Appendix B, we include definitions of properties from the literature. In Appendix C some com-
mon clustering functions are defined. Appendix D includes proofs that were omitted from the body
of the paper.

1 Appendix B: Definitions of properties from the literature

1.1 Isomorphism invariance

The following invariance property, proposed in [2] under the name “representation independence”,
seems to be an essential part of our understanding of what clustering is. It requires that the output
of a clustering function is independent of the labels of the data points.

Definition 1. A clustering function F is isomorphism invariant if whenever (X, d) ∼ (X ′, d′), then,
for every k, F (X, d, k) and F (X ′, d′, k) are isomorphic clusterings.

1.2 Scale invariance

Scale invariance, proposed by Kleinberg [8], requires that the output of a clustering be invariant to
uniform scaling of the data.

Definition 2. A clustering function F is scale invariant if for any data sets d and d′, if there exists
a real number c > 0 so that for all x, y ∈ X , d(x, y) = cḋ′(x, y) then for every 1 6 k 6 |X|,
F (X, d, k) = F (X, d′, k).

1.3 Order invariance

Order invariance, proposed by Jardine and Sibson[6], describes clustering functions that are based
on the ordering of pairwise distances.

A distance function d′ of X is an order invariant modification of d over X if for all x1, x2, x3, x4 ∈
X , d(x1, x2) < d(x3, x4) if and only if d′(x1, x2) < d′(x3, x4).

Definition 3 (Order invariance). A clustering function F is order invariant if whenever a distance
function d′ over X is an order invariant modification of d, F (X, d, k) = F (X, d′, k) for all k.

1.4 Consistency

Consistency, proposed by Kleinberg [8], aims to formalize the preference for clusters that are dense
and well-separated. This property requires that the output of a clustering function should remain
unchanged after shrinking within-cluster distances and stretching between-cluster distances.

1

Definition 4 (consistency). • Given a clustering C of some domain (X, d), we say that a
distance function d′ over X , is (C, d)-consistent if

1. d′X(x, y) 6 dX(x, y) whenever x ∼C y, and
2. d′X(x, y) > dX(x, y) whenever x 6∼C y.

• A clustering function F is consistent if for every X, d, k, if d′ is (F (X, d, k), d)-consistent
then F (X, d, k) = F (X, d′, k).

While this property may sound desirable and natural, it turns out that many common clustering
paradigms fail to satisfy it. In a sense, this property may be viewed as the main weakness of Klein-
berg’s impossibility result. The following two properties are straightforward relaxations of consis-
tency were proposed in [2]. Most of the common clustering paradigms satisfy at least one of them,
and they can thus be used to highlight some inherent differences between clustering methods.

Threshold richness, which we introduce in Appendix A, can be viewed as an even more drastic
relaxation that may be even be viewed as a possible axiom for clustering.

1.5 Inner and Outer consistency

Outer consistency represents the preference for well separated clusters, by requiring that the output
of a clustering function should not change if clusters are moved away from each other.

Definition 5 (outer-consistency). • Given a clusteringC of some domain (X, d), we say that
a distance function d′ over X , is (C, d)-outer consistent if

1. d′X(x, y) = dX(x, y) whenever x ∼C y, and
2. d′X(x, y) > dX(x, y) whenever x 6∼C y.

• A clustering function F is outer consistent if for every X, d, k, if d′ is (F (X, d, k), d)-outer
consistent then F (X, d, k) = F (X, d′, k).

Inner consistency represents the preference for placing points that are close together within the same
cluster, by requiring that the output of a clustering function should not change if elements of the same
cluster are moved closer to each other.

Inner consistency is defined in the same way outer-consistency, except that conditions 1 and 2 are
modified as follows:

1. d′X(x, y) 6 dX(x, y) whenever x ∼C y, and

2. d′X(x, y) = dX(x, y) whenever x 6∼C y.

Clearly, consistency implies both outer-consistency and inner-consistency. Note also that if a func-
tion is both inner-consistent and outer-consistent then it is consistent.

1.6 Richness properties

The richness property requires that we be able to obtain any partition of the domain by modifying the
distances between elements. This property is based on Kleinberg’s [8] richness axiom, and appears
in [3].

Definition 6 (Richness). A clustering function F satisfies richness if for any sets X1, X2, . . . , Xk,
there exists a distance function d over X ′ =

⋃k
i=1Xi so that F (X ′, d, k) = {X1, X2, . . . , Xk}.

We propose two new variants of the richness property: outer richness and inner richness.

2

1.7 Outer richness

Outer richness, a natural variation on the richness property, was proposed in [2] under the name
“extended richness.” (we have renames it to contrast this property with “inner richness” that we
propose in Appendix A). Given k sets, a clustering function satisfies outer richness if by setting
the distances between some data sets, without modifying distances within the sets, we can get F to
output each of these data sets as a cluster. This corresponds to the intuition that any groups of points,
regardless of within distances, can be made into separate clusters.

Definition 7 (Outer Richness). For every set of domains, {(X1, d1), . . . (Xn, dk)}, there ex-
ists a distance function d̂ over

⋃n
i=1Xi that extends each of the di’s (for i 6 k), such that

F (
⋃k

i=1Xi, d̂, k) = {X1, X2, . . . , Xk}.

The following properties are more straightforward, explicit characteristics of certain specific clus-
tering methods.

1.8 Hierarchical clustering

The term Hierarchical clustering is widely used to denote clustering algorithms that operate in a
“bottom up” or “top down” manner. The following formalization of was proposed in [2].

A clustering C of X is a refinement of clustering C ′ of X if every cluster in C is a subset of some
cluster in C ′, or, equivalently, if every cluster of C ′ is a union of clusters of C.

The range of hierarchical functions over the same data with different number of clusters is limited
to clusterings that are refinements of each other.

Definition 8 (Hierarchical Functions). A clustering function is hierarchical if for every 1 6 k 6
k′ 6 |X|, F (X, d, k′) is a refinement of F (X, d, k).

1.9 Locality

Intuitively, a clustering function is local if its behavior on a union of a set of clusters depends only on
distances between elements of that union, and is independent of the rest of the domain set. Locality
was proposed in [2].

Definition 9 (Locality). A clustering function F is local if for any clustering C output by F and
every subset of clusters, C ′ ⊆ C,

F (
⋃
C ′, d, |C ′|) = C ′.

In other words, for every domain (X, d) and number of clusters, k, if X ′ is the union of k′ clusters
in F (X, d, k) for some k′ 6 k, then, applying F to (X ′, d) and asking for a k′-clustering, will yield
the same clusters that we started with.

2 Appendix C: Clustering functions

2.1 Linkage-based clustering

Linkage-based clustering algorithms are iterative algorithms that begin by placing each point in a
distinct cluster, and then repeatedly merge the closest clusters until a specified number of clusters is
formed.

The closest clusters are determined by a linkage function. The linkage functions used by the most
common linkage-based algorithms are as follows.

• Single linkage: mina∈A,b∈B d(a, b).

3

• Average linkage:
∑

a∈A,b∈B d(a,b)

|A|·|B|

• Complete linkage: maxa∈A,b∈B d(a, b).

Linkage-based algorithms are sometimes allowed to run until a single cluster is formed, and the
dendrogram produced by the algorithm is then pruned to obtain a clustering. We note that the
properties in the above taxonomy can be reformulated in this framework, resulting in the same
taxonomy of linkage based algorithms.

2.2 Objective-based clustering

Many clustering algorithms aim to find clusterings with low loss with respect to a specific objective
function. An example of such an objective function is Min-Sum, the sum of within-cluster distances,∑

x∼Cy d(x, y). Every objective functionO has a corresponding clustering function which outputs a
clustering that optimizesO. Such clustering functions differ from other (often more computationally
efficient) algorithms that aim to find clusterings with low loss with respect to a specific objective
function, but often do not output an optimal solution. We now present centroid, k-means, and
spectral clustering objective functions.

2.2.1 Centroid

Following Kleinberg’s [8] definition, (k, g)-centroid clustering functions find a set of k “centroids”
{c1, . . . , ck} ⊆ X so that

∑
x∈X mini g(d(x, ci)) is minimized. Then k-median is obtained by

setting g to the identity. In this setting, Kleinberg defines k-means by setting g(x) = x2, we refer to
this clustering function as Centroid k-means. The most common definition of k-means is below.

2.2.2 k-means

The k-means objective is to find a set of k elements {c1, c2, . . . , ck} in the underlying space, so
that

∑
x∈X mini d(x, ci) is minimized. This formalization assumes that the distance between any

element of the domain and point in the underlying space is defined. k-means is often applied in
Euclidean space, where the k-means objective is equivalent to

∑
Ci∈C

1
|Ci|

∑
x,y∈Ci

d(x, y)2.

3 Appendix D: Proofs

3.1 Property Relationships

Theorem 1. If a clustering function F satisfies richness and consistency, then it satisfies threshold-
richness.

Proof. Let X = ∪ki=1Xi be some data set. Since F is rich, there exists a distance function d over
X such that F (X, d, k) = {X1, . . . , Xk} = C. Let a′ by the minimum within cluster distance. By
using outer consistency, we construct distance function d′ from d by making the minimum between
cluster distance larger than the maximum within cluster distance, and let this value be b′. This is an
outer consistent change, and so F (X, d′, k) = F (X, d, k). Take any distance function d∗ such that
d∗(x, y) 6 a′ 6 d′(x, y) if x ∼C y, and d∗(x, y) > b > d′(x, y) if x 6∼C y. By definition, d∗ is a
C, d′-consistent variant and therefore F (X, d∗, k) = C.

3.2 Taxonomy proofs

Theorem 2. Every (k,g)-centroid clustering function is local.

Proof. For clustering C = {C1, C2, . . . , Ck}, let T = {c1, c2, . . . , ck} for some ci ∈ Ci. We refer
to elements of T as centers. Let sumx∈X mint∈T g(d(x, t)) denote the loss of a clustering C. F
returns the k-clustering C with minimal loss.

4

Figure 1: A data set used to illustrate that Ratio-Cut does not satisfy locality.

Let k′-clustering C ′ be a subset of F (X, d, k). Let S = X/C ′. Since g is non-decreasing, C ′ is
induced by centers in S ∩ T . Assume by way of contradiction that there exists a clustering C ′′ of S
with lower loss than C ′.

Then we can obtain a k-clustering ofX with lower loss thanF (X, d, k) by clusteringX∩S usingC ′′

instead of C ′. Since F (X, d, k) has minimal loss over all k-clusterings of X , this is a contradiction.

Centroid-based clustering functions are also outer-consistent.

Theorem 3. Every (k,g)-centroid clustering function is outer-consistent.

Proof. Assume by way of contradiction that some (k,g)-centroid clustering function F is not outer-
consistent. Then there exists a data set (X, d), k ∈ Z+ and d′ an (F (X, d, k), d)-outer-consistent
variant, so that F (X, d, k) 6= F (X, d′, k). Let C = F (X, d, k) and C ′ = F (X, d′, k). Since d′

is a (C, d)-outer-consistent variant, C has the same loss on (X, d) and (X, d′). F (X, d′, k) 6= C,
C ′ has lower loss than C on (X, d′). Now consider clustering (C, d) with C ′. Since d′ is a (C, d)-
outer-consistent variant, for all x, y ∈ X , d(x, y) 6 d′(x, y). Since g is non-decreasing, the loss of
C ′ on (X, d) is at most the loss of C ′ on (X, d′). However, since C = F (X, d), the minimal loss
clustering on (X, d) is C, contradiction.

It can be shown that Min-Sum is local and outer-consistent using similar arguments to Theorem 2
and Theorem 3.

Kleinberg showed that centroid-based clustering functions are not consistent (Theorem 4.1, [8]).
Indeed, his proof shows that centroid-based clustering functions are not inner-consistent.

Theorem 4. Ratio-Cut is not local.

Proof. Figure 1 illustrates a data set (with the similarity indicated on the arrows) where the op-
timal ratio-cut 3-clustering is {{A}, {B,C}, {D}}. However, on data set {B,C,D} (with the
same pairwise similarities as in Figure 1), the clustering {{B}, {C,D}} has lower ratio-cut than
{{B,C}, {D}}.

Let vol(Ai) =
∑

a,b∈Ai
s(a, b).

NormalizedCut(A1, A2, . . . , Ak) =

k∑
1

cut(Ai, Āi)

vol(Ai)
.

We now show that normalized-cut is not local.

Theorem 5. Normalized-Cut is not local.

Proof. Figure 2 illustrates a data set with the similarities indicated on the arrows - a
missing arrow indicates a similarity of 0. The optimal normalized-cut 3-clustering is

5

Figure 2: A data set used to illustrate that Ratio-Cut does not satisfy locality.

Figure 3: A data set used to illustrate that normalized cut does not satisfy inner-consistency. The
similarities not marked are set to 0.

{{A,A′}, {B,B′, C, C ′}, {D,D′}}. However, on data set {B,B′, C, C ′, D,D′} (with the same
pairwise similarity as in Figure 2), the clustering {{B,B′}, {C,C ′, D,D′}} has lower normalized-
cut than
{{B,B′, C, C ′}, {D,D′}}.

We now prove that inner consistency distinguished between ratio cut and normalized cut.

Theorem 6. Ratio-cut is inner-consistent.

Proof. Assume by way of contradiction that ratio-cut is not inner-consistent. Then there exist some
(X, s), k, and d′ an (F (X, d, k), s)-outer inner-consistent variant so that F (X, s′, k) 6= F (X, s, k).
Let C = F (X, s, k) and C ′ = F (X, d, k). Then RatioCut(C ′, X, d′) < RatioCut(C,X, d).
Now consider clustering C ′ on (X, s). The ratio-cut of C ′ on (X, d) is at most the ratio-cut of
C ′ on (X, s′) since going from s′ to s can only decrease similarities, which can only decrease the
ratio-cut. That is, RatioCut(C ′, X, s) 6 RatioCut(C ′, X, s′). Therefore, RatioCut(C ′, X, s) 6
RatioCut(C ′, X, s′) < RatioCut(C,X, s), which contradicts that F (X, s, k) = C 6= C ′.

Theorem 7. Normalized-cut is not inner-consistent.

Proof. Consider the data set (X, d) in Figure 3. For k = 3, NormalizedNut(X, d, 3) =
{{A,C}, {B,D}, {E,F,G,H}}. Define a distance function d′ over X so that d′(E,F) =
d′(G,H) = 100, and d′(x, y) = d(x, y) for all {x, y} 6= {E,F}, {x, y} 6= {G,H}.
Then d′ is a (F (X, d, 3), d), d)-inner consistent change, however, NormalizedCut(X, d′, 3) =
{{A,B,C,D}}. But then NormalizedCut(X, d′, 3) 6= NormalizedCut(X, d, 3), violating
inner-consistency.

Lemma 1. Ratio cut satisfies inner-richness.

Proof. Consider any data set (X, s) and partitioning {X1, X2, . . . , Xn} of s. Let m =
maxi6=j,a∈Xi,b∈Xj s(a, b). Construct s′ as follows: for all i 6= j, a ∈ Xi, b ∈ Xj , set s′(a, b) =
s(a, b). Otherwise, set s(a, b) = m|X|3 + 1. The ratio cut loss of {X1, X2, . . . , Xn} on (X, s′) is
less than m|X|2, and any other n-clustering of (X, s′) has loss greater than m|X|2.

Lemma 2. Normalized cut satisfies inner-richness.

6

Proof. We can modify the within edges to make the normalized cut of the clustering
{X1, X2, . . . , Xk} arbitrarily close to 0, making all within edges equal. The cost of any other
clustering would have an edges (x, y) so that x, y ∈ Xi for some i, and so the cost of any such clus-
tering is arbitrarily greater than the cost of {X1, X2, . . . , Xk} (in particular, great than 1/m where
m is the number of edges).

Lemma 3. Average linkage and complete linkage are not inner consistent.

Proof. We present here a counter example for both. Let X = {A,B,C,D} and define dis-
tance d over X as follows: d(A,B) = 1 + ε, d(A,C) = 1 − 3.5ε, d(A,D) = 1, d(B,C) =
1− 4ε, d(B,D) = 1− ε and d(C,D) = 1− 2ε.

For sufficiently small epsilon, all individual lengths are approximately 1, but the sum of any path
between two points in X is approximately 2 or more. For both average and complete linkage, B
and C are merged first, followed by (B,C) and D. If we make an inner consistent change, and set
d(B,D) = 1− 5ε, then B and D are merged first, followed by A and C.

Lemma 4. Min-sum is inner consistent.

Proof. Given a data set (X, d), minsum yields a clustering C∗ of X . Assume, by means of
contradiction, that shrinking some within cluster edges yields a different clustering as the out-
put to minsum, and denote this clustering by C ′. Let the sum of all differences over the
edges we shrunk be denoted by α, and the new distance function be denoted by d′. Define
cost(C, d) =

∑
x∼Cy d(x, y). The difference between cost(C ′, d′) and cost(C ′, d) is at most α.

So, cost(C ′, d′) >= cost(C ′, d) − α > cost(C∗, d) − alpha = cost(C∗, d′), since C∗ had the
minimum cost with distance function d.

Lemma 5. Normalized cut and ratio cut are not outer consistent.

Proof. We present a simple counter example. Let X = {a, b, c, d} and define similarity function d
over X as follows: d(a, b) = 1, d(a, d) = 0.999, d(b, c) = 1.0015, d(c, d) = 1.001, d(a, c) = 0
and d(b, d) = 0. With this arrangement, using ratio cut we arrive at the 3-clustering a, d, {b, c}.
If we change the similarity between a and b to 0.997, which is an outer consistent change because
we are dealing with similarities, then we arrive at the 3-clustering a, b, {c, d}. Therefore, ratio cut
is not outer consistent. The same example works for normalized cut, except that we create points
xa, xb, xc, xd such that d(xi, i) = 100 and the similarity between xi and every other point is 0.

We briefly sketch the ideas for the remaining proofs in the above taxonomy. The linkage algorithms
are outer-consistent since the distance between two cluster can only increase by increasing between
cluster edges. Single linkage is inner-consistent since by Kleinberg’s Theorem 2.2(a) single-linkage
is consistent. The linkage-based algorithms are hierarchical by definition. It comes as no surprise
that the remaining algorithms are not hierarchical, which can demonstrated by specific examples.
Locality of the three linkage based algorithms is a result of the fact that the distance between two
clusters depends only on the distances between those clusters.

It can be shown that single linkage and complete linkage are order invariant since the algorithm
makes use only of relative distances according to the less-than relation. All other clustering functions
that we classify make use of the exact values in the distance function, and it can be shown that those
functions are not order invariant by demonstrating data sets with order invariant modifications of
those data sets on which the output of the clustering functions differ.

Outer consistency of the spectral clustering algorithm is achieved by setting between cluster similar-
ity to 0. Both outer and inner richness for the remaining clustering functions in the above taxonomy
can be demonstrated by making the ratio of the maximum between edges and minimum within edge
sufficiently large.

7

Figure 4: A data set used to illustrate that Furthest Centroids is not outer consistent.

It is easy to see that all algorithms listed in our taxonomy satisfy scale invariance and isomorphism
invariance. It can also be easily verified that they are all threshold rich, and thus must also satisfy
richness.

3.3 k-means proofs

We now present the proofs for the results displayed in our analysis of heuristics meant to approxi-
mate k-means. First, we note that all of the heuristics are obviously exemplar-based since they use
the Lloyd method. Further, both heuristics are clearly scale invariant and isomorphism invariant.

Lemma 6. Furthest Centroids satisfies outer richness.

Proof. Given data sets (X1, d1), . . . , (Xn, dn), place the data sets sufficiently far apart so that the
n points selected for the initial centers belong to distinct Xis and {X1, X2, . . . , Xk} is a local
minimum.

Since Furthest Centroids satisfies outer richness, it also satisfies richness.

Lemma 7. Furthest Centroids is not outer-consistent.

Proof. Consider the data set (X, d) embedded in R2 illustrated on the left hand size of Figure 4.
For this example, all distances are as implied by the embedding. Set k = 2. Then KKZ selects
the centers A and D, and outputs the clustering C = {{A}, {B,C,D}}. Consider the (C, d)-outer
consistent change illustrated on the right hand side of Figure 4. A and C are selected as centers, and
the algorithm outputs the clustering {{A,B}, {C,D}}.

Lemma 8. Furthest Centroids is not local.

Proof. Furthest Centroids is not local because the selection of the initial center is a global decision.
For example, consider the data set in Figure 5. Furthest Centroids for k = 3 selects A,B and E as
the original centers. It then creates the clusters {A,C}, {B,D} and {E}, which is a local optimum.
However, if we restrict the data set to {A,B,C,D} and set k = 2, the original centers are B and C.
This leads to the clustering {{A,C,D}, {B}}, and A,C and D are closer to the center of mass of
{A,C,D} than to D, thus it is a local optimum.

Finally, it is easy to see that furthest centroids, because the seeding is deterministic, is threshold
rich. We simply ensure that b is large enough relative to a so that the furthest centres are always
from separate clusters.

Lemma 9. Random Centroid does not satisfy locality.

8

Figure 5: A data set embedding in R2 illustrating that Furthest Centroids is not local. The pairwise
distances are as shown in the embedding.

Proof. Consider the following data set on the real line. On the left there is a dense group of many
points all at distance at most ε from each other, label this group of points X1. Then 10 units to the
right there is a point a, 20 units to the right of point a there is point b. Finally, 10 units to the right
of b there is another group of points at distance at most ε from each other, call this group of points
X2. The groups X1 and X2 have the same number of points. We consider the case where we get
two randomized centroids in X1, and two in X2. Because both X1 and X2 lie on a line, one point
will be closest to the points labeled a and b. Further, due to the distances, all points in X1 are closer
to a than all points in X2, and vice-versa. Thus, we will end with the 4-clustering {X1, X2, a, b}. If
we consider now the subset of points X1 ∪ a ∪ b and ask for its 3-clustering, we can expect that all
randomized centroids will be within X1, and only one centre will consume both of a and b. Thus,
we will end with a clustering that splits X1 and has a and b together. In fact, the probability of
having a and b in separate clusters approaches 0 as we increase the number of points in X1.

Lemma 10. Random centroid satisfies richness.

Here we give a sketch of the proof. For fixed k we consider the k-dimensional simplex. We position
the data points at the vertices of the simplex, and form curves leaving the vertex such that each curve
moves slightly closer to one other vertex in the simplex, while moving further away from every other
vertex. We can do this for each vertex v by examining the k−1 k-dimensional hyperspheres centred
at every other vertex v′ with radius d(v, v′). To move closer to vertex v′ from v while moving further
away from every other vertex, we follow the curvature of the hypersphere centred at v′, leading away
from v. We simply do not move towards any intersection with any other hypersphere. We then move
each successive point closer to v′ as it moves away from v by some ε small enough so that we still do
not intersect any other hypersphere. We distribute the points in each cluster evenly along each curve
leading away from v to another vertex on the simplex. By making the distance between vertices
large enough relative to within cluster distances, any point in a cluster will be far closer to every
other point in the cluster than a point from a different cluster.

The last detail is to move away clusters that do not contain enough points to have at least one point
per curve leading from vertex v to every other vertex in the simplex. For these clusters, we need
to move them further away from every other vertex, and move all points onto one curve leading to
some other vertex. This must be done for each cluster with too few points, but for each one all points
must be moved onto a curve leading to a vertex that has not been used by another cluster with too
few points. Thus, each cluster with too few points has all points in the cluster on a particular curve,
leading to a single vertex in the simplex, and no other cluster with too few points has points on a
curve leading to the same vertex.

Lemma 11. Randomized centroid Lloyd method is not outer consistent.

9

Proof. Consider a data set where the vast majority of points are in a unit ball centred at (0, 0) in two
dimensional euclidean space, such that no two points have the same x or y coordinate. Consider
two other points, and make them far from the ball relative to its radius. Now, increase the distance
between these two points along one dimension, so that they are both at the same y coordinate b,
with b > 0, say, with one point being at (−a, b) and the other being at (a, b). If we increase a large
enough, and it doesn’t have to be that large, the 3-clustering returned will consist of one cluster
being the unit ball, and the other two clusters being the extra points we spaced far apart.

Now, maintaining the distance from the closest point in the unit ball, rotate both extra points up so
that they lie on the y-axis at coordinate

√
a2 + b2, placing one of the points sufficiently far from the

unit ball so that the distance between a and b is at least what it was in the previous arrangement. If
we increase the y coordinate of these two points by a large enough factor, we can be certain that the
random centre chosen from our unit ball with highest y-coordinate will be the one and only centre to
be assigned both extra points. Also, by moving the two extra points further away, we can guarantee
that the centre of mass will then shift outside of the unit ball, and the Lloyd method will stabilize at
the following clustering: the unit ball will be split into two clusters, and the extra points will become
a single cluster.

Lemma 12. Randomized centroid Lloyd method is not threshold rich.

Proof. This follows trivially by looking at three cluster example. Given any a < b, we can make
each cluster a ball with all points lying on surface of the ball. Then, regardless of how we arrange
the balls, we can pick a ball that contains a point that is closer to two balls than two other points
within the same ball. Thus, there is some probability that we will not get the clustering we desire
that depends only on the number of points, and not on the arrangement.

Inner richness fails in Euclidean space, and so we have that any Lloyd method heuristic, regardless
of initialization criteria, will not satisfy inner richness.

Lemma 13. The Lloyd method with any initialization method does not satisfy inner richness.

Proof. Consider the four points A,B,C and D, with distances between all points as on the real line
embedding of these four points in a row, with A followed by B at distance 1, B followed by C at
distance 7.9, then C followed by D at distance 1.1 so that the distance between A and D is 10. In
order to apply the Lloyd method, the underlying space needs to satisfy the triangle inequality. Thus,
if only the distance between C and D can be modified, it must remain at least 7.9. We argue that
this restriction means that it is impossible to set the distance between C and D in such a way that
the algorithm will outputs {{A}, {B,C}, {D}}. For any initial centers, the algorithm output either
{A,B} or {C,D} as a cluster.

References

[1] M. Ackerman and S. Ben-David. Measures of Clustering Quality: A Working Set of Axioms
for Clustering. NIPS, 2008.

[2] Margareta Ackerman, Shai Ben-David, and David Loker. Characterization of Linkage-based
Clustering. COLT, 2010.

[3] Reza Bosagh Zadeh and Shai Ben-David. “A Uniqueness Theorem for Clustering.” The 25th
Annual Conference on Uncertainty in Artificial Intelligence UAI, 2009.

[4] E. Forgy. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications.
In WNAR meetings, Univ of Calif Riverside, number 768, 1965.

10

[5] He, J., Lan, M., Tan, C.-L., Sung, S. -Y., and Low, H.-B. (2004). Initialization of cluster
refinement algorithms: A review and comparative study. In Proc. IEEE Int. Joint Conf. Neural
Networks (pp. 297-302).

[6] N. Jardine, R. Sibson, Mathematical Taxonomy Wiley, 1971.

[7] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang. A new initialization technique for generalized
Lloyd iteration. IEEE Signal Processing Letters, 1(10):144146, 1994.

[8] Jon Kleinberg. “An Impossibility Theorem for Clustering.” Advances in Neural Information
Processing Systems (NIPS) 15, 2002.

[9] U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing 17(4): 395-416,
2007

11

